Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 11(3): e1004792, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25815898

RESUMEN

The prolonged survival of Mycobacterium tuberculosis (M. tb) in the host fundamentally depends on scavenging essential nutrients from host sources. M. tb scavenges non-heme iron using mycobactin and carboxymycobactin siderophores, synthesized by mycobactin synthases (Mbt). Although a general mechanism for mycobactin biosynthesis has been proposed, the biological functions of individual mbt genes remain largely untested. Through targeted gene deletion and global lipidomic profiling of intact bacteria, we identify the essential biochemical functions of two mycobactin synthases, MbtK and MbtN, in siderophore biosynthesis and their effects on bacterial growth in vitro and in vivo. The deletion mutant, ΔmbtN, produces only saturated mycobactin and carboxymycobactin, demonstrating an essential function of MbtN as the mycobactin dehydrogenase, which affects antigenicity but not iron uptake or M. tb growth. In contrast, deletion of mbtK ablated all known forms of mycobactin and its deoxy precursors, defining MbtK as the essential acyl transferase. The mbtK mutant showed markedly reduced iron scavenging and growth in vitro. Further, ΔmbtK was attenuated for growth in mice, demonstrating a non-redundant role of hydroxamate siderophores in virulence, even when other M. tb iron scavenging mechanisms are operative. The unbiased lipidomic approach also revealed unexpected consequences of perturbing mycobactin biosynthesis, including extreme depletion of mycobacterial phospholipids. Thus, lipidomic profiling highlights connections among iron acquisition, phospholipid homeostasis, and virulence, and identifies MbtK as a lynchpin at the crossroads of these phenotypes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Oxazoles/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Ratones , Mycobacterium tuberculosis/genética , Factores de Virulencia/genética
2.
Proc Natl Acad Sci U S A ; 111(8): 2978-83, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516143

RESUMEN

To identify lipids with roles in tuberculosis disease, we systematically compared the lipid content of virulent Mycobacterium tuberculosis with the attenuated vaccine strain Mycobacterium bovis bacillus Calmette-Guérin. Comparative lipidomics analysis identified more than 1,000 molecular differences, including a previously unknown, Mycobacterium tuberculosis-specific lipid that is composed of a diterpene unit linked to adenosine. We established the complete structure of the natural product as 1-tuberculosinyladenosine (1-TbAd) using mass spectrometry and NMR spectroscopy. A screen for 1-TbAd mutants, complementation studies, and gene transfer identified Rv3378c as necessary for 1-TbAd biosynthesis. Whereas Rv3378c was previously thought to function as a phosphatase, these studies establish its role as a tuberculosinyl transferase and suggest a revised biosynthetic pathway for the sequential action of Rv3377c-Rv3378c. In agreement with this model, recombinant Rv3378c protein produced 1-TbAd, and its crystal structure revealed a cis-prenyl transferase fold with hydrophobic residues for isoprenoid binding and a second binding pocket suitable for the nucleoside substrate. The dual-substrate pocket distinguishes Rv3378c from classical cis-prenyl transferases, providing a unique model for the prenylation of diverse metabolites. Terpene nucleosides are rare in nature, and 1-TbAd is known only in Mycobacterium tuberculosis. Thus, this intersection of nucleoside and terpene pathways likely arose late in the evolution of the Mycobacterium tuberculosis complex; 1-TbAd serves as an abundant chemical marker of Mycobacterium tuberculosis, and the extracellular export of this amphipathic molecule likely accounts for the known virulence-promoting effects of the Rv3378c enzyme.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Lípidos/biosíntesis , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/patogenicidad , Conformación Proteica , Transferasas Alquil y Aril/genética , Proteínas Bacterianas/genética , Cromatografía por Intercambio Iónico , Dimerización , Lípidos/química , Lípidos/genética , Espectrometría de Masas , Estructura Molecular , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...