Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 165(1)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38066669

RESUMEN

X-linked hypophosphatemia (XLH) is the most common form of hereditary hypophosphatemic rickets. The genetic basis for XLH is loss of function mutations in the phosphate-regulating endopeptidase X-linked (PHEX), which leads to increased circulating fibroblast growth factor 23 (FGF23). This increase in FGF23 impairs activation of vitamin D and attenuates renal phosphate reabsorption, leading to rickets. Previous studies have demonstrated that ablating FGF23 in the Hyp mouse model of XLH leads to hyperphosphatemia, high levels of 1,25-dihydroxyvitamin D, and is not associated with the development of rickets. Studies were undertaken to define a role for the increase in 1,25-dihydroxyvitamin D levels in the prevention of rickets in Hyp mice lacking FGF23. These mice were mated to mice lacking Cyp27b1, the enzyme responsible for activating vitamin D metabolites, to generate Hyp mice lacking both FGF23 and 1,25-dihydroxyvitamin D (FCH mice). Mice were fed a special diet to maintain normal mineral ion homeostasis. Despite normal mineral ions, Hyp mice lacking both FGF23 and Cyp27b1 developed rickets, characterized by an interrupted, expanded hypertrophic chondrocyte layer and impaired hypertrophic chondrocyte apoptosis. This phenotype was prevented when mice were treated with 1,25-dihydroxyvitamin D from day 2 until sacrifice on day 30. Interestingly, mice lacking FGF23 and Cyp27b1 without the PHEX mutation did not exhibit rickets. These findings define an essential PHEX-dependent, FGF23-independent role for 1,25-dihydroxyvitamin D in XLH and have important therapeutic implications for the treatment of this genetic disorder.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Animales , Ratones , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , Raquitismo Hipofosfatémico Familiar/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Placa de Crecimiento/metabolismo , Minerales/uso terapéutico , Fosfatos , Vitamina D/metabolismo
2.
PLoS One ; 16(5): e0252348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34043707

RESUMEN

Osteocytes remodel the perilacunar matrix and canaliculi. X-linked hypophosphatemia (XLH) is characterized by elevated serum levels of fibroblast growth factor 23 (FGF23), leading to decreased 1,25 dihydroxyvitamin D3 (1,25D) production and hypophosphatemia. Bones from mice with XLH (Hyp) have enlarged osteocyte lacunae, enhanced osteocyte expression of genes of bone remodeling, and impaired canalicular structure. The altered lacuno-canalicular (LCN) phenotype is improved with 1,25D or anti-FGF23 antibody treatment, pointing to roles for 1,25D and/or phosphate in regulating this process. To address whether impaired 1,25D action results in LCN alterations, the LCN phenotype was characterized in mice lacking the vitamin D receptor (VDR) in osteocytes (VDRf/f;DMP1Cre+). Mice lacking the sodium phosphate transporter NPT2a (NPT2aKO) have hypophosphatemia and high serum 1,25D levels, therefore the LCN phenotype was characterized in these mice to determine if increased 1,25D compensates for hypophosphatemia in regulating LCN remodeling. Unlike Hyp mice, neither VDRf/f;DMP1Cre+ nor NPT2aKO mice have dramatic alterations in cortical microarchitecture, allowing for dissecting 1,25D and phosphate specific effects on LCN remodeling in tibial cortices. Histomorphometric analyses demonstrate that, like Hyp mice, tibiae and calvariae in VDRf/f;DMP1Cre+ and NPT2aKO mice have enlarged osteocyte lacunae (tibiae: 0.15±0.02µm2(VDRf/f;DMP1Cre-) vs 0.19±0.02µm2(VDRf/f;DMP1Cre+), 0.12±0.02µm2(WT) vs 0.18±0.0µm2(NPT2aKO), calvariae: 0.09±0.02µm2(VDRf/f;DMP1Cre-) vs 0.11±0.02µm2(VDRf/f;DMP1Cre+), 0.08±0.02µm2(WT) vs 0.13±0.02µm2(NPT2aKO), p<0.05 all comparisons) and increased immunoreactivity of bone resorption marker Cathepsin K (Ctsk). The osteocyte enriched RNA isolated from tibiae in VDRf/f;DMP1Cre+ and NPT2aKO mice have enhanced expression of matrix resorption genes that are classically expressed by osteoclasts (Ctsk, Acp5, Atp6v0d2, Nhedc2). Treatment of Ocy454 osteocytes with 1,25D or phosphate inhibits the expression of these genes. Like Hyp mice, VDRf/f;DMP1Cre+ and NPT2aKO mice have impaired canalicular organization in tibia and calvaria. These studies demonstrate that hypophosphatemia and osteocyte-specific 1,25D actions regulate LCN remodeling. Impaired 1,25D action and low phosphate levels contribute to the abnormal LCN phenotype observed in XLH.


Asunto(s)
Remodelación Ósea , Calcitriol/deficiencia , Raquitismo Hipofosfatémico Familiar/metabolismo , Osteocitos , Deficiencia de Vitamina D/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Factor-23 de Crecimiento de Fibroblastos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocitos/metabolismo , Osteocitos/patología
3.
J Bone Miner Res ; 36(8): 1510-1520, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33900666

RESUMEN

Bone marrow stromal cells (BMSCs) are multipotent cells that differentiate into cells of the osteogenic and adipogenic lineage. A striking inverse relationship between bone marrow adipose tissue (BMAT) and bone volume is seen in several conditions, suggesting that differentiation of BMSCs into bone marrow adipocytes diverts cells from the osteogenic lineage, thereby compromising the structural and mechanical properties of bone. Phosphate restriction of growing mice acutely decreases bone formation, blocks osteoblast differentiation and increases BMAT. Studies performed to evaluate the cellular and molecular basis for the effects of acute phosphate restriction demonstrate that it acutely increases 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoblasts. This is accompanied by decreased expression of Wnt10b in BMSCs. Phosphate restriction also promotes expression of the key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein α (CEBPα), in CXCL12 abundant reticular (CAR) cells, which represent undifferentiated BMSCs and are the main source of BMAT and osteoblasts in the adult murine skeleton. Consistent with this, lineage tracing studies reveal that the BMAT observed in phosphate-restricted mice is of CAR cell origin. To determine whether circumventing the decrease in mTORC1 signaling in maturing osteoblasts attenuates the osteoblast and BMAT phenotype, phosphate-restricted mice with OSX-CreERT2 -mediated haploinsufficiency of the mTORC1 inhibitor, TSC2, were generated. TSC2 haploinsufficiency in preosteoblasts/osteoblasts normalized bone volume and osteoblast number in phosphate-restricted mice and attenuated the increase in BMAT observed. Thus, acute phosphate restriction leads to decreased bone and increases BMAT by impairing mTORC1 signaling in osterix-expressing cells. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Médula Ósea , Fosfatos , Tejido Adiposo , Animales , Células de la Médula Ósea , Diferenciación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Osteoblastos , Osteogénesis
4.
JBMR Plus ; 4(7): e10372, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32666023

RESUMEN

Bone biopsy is still the gold standard to assess bone turnover (T), mineralization (M), and volume (V) in CKD patients, and serum biomarkers are not able to replace histomorphometry. Recently, metabolomics has emerged as a new technique that could allow for the identification of new biomarkers useful for disease diagnosis or for the understanding of pathophysiologic mechanisms, but it has never been assessed in the chronic kidney disease-mineral and bone disorder (CKD-MBD) scenario. In this study, we investigated the association between serum metabolites and the bone TMV classification in patients with end-stage renal disease by using serum NMR spectroscopy and bone biopsy of 49 hemodialysis patients from a single center in Brazil. High T was identified in 21 patients and was associated with higher levels of dimethylsulfone, glycine, citrate, and N-acetylornithine. The receiver-operating characteristic curve for the combination of PTH and these metabolites provided an area under the receiver-operating characteristic curve (AUC) of 0.86 (0.76 to 0.97). Abnormal M was identified in 30 patients and was associated with lower ethanol. The AUC for age, diabetes mellitus, and ethanol was 0.83 (0.71 to 0.96). Low V was identified in 17 patients and was associated with lower carnitine. The association of age, phosphate, and carnitine provided an AUC of 0.83 (0.70 to 0.96). Although differences among the curves by adding selected metabolites to traditional models were not statistically significant, the accuracy of the diagnosis according to the TMV classification seemed to be improved. This is the first study to evaluate the TMV classification system in relation to the serum metabolome assessed by NMR spectroscopy, showing that selected metabolites may help in the evaluation of bone phenotypes in CKD-MBD. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

5.
J Bone Miner Res ; 35(3): 540-549, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31693237

RESUMEN

Jansen's metaphyseal chondrodysplasia (JMC) is a rare disease of bone and mineral ion physiology that is caused by activating mutations in PTHR1. Ligand-independent signaling by the mutant receptors in cells of bone and kidney results in abnormal skeletal growth, excessive bone turnover, and chronic hypercalcemia and hyperphosphaturia. Clinical features further include short stature, limb deformities, nephrocalcinosis, and progressive losses in kidney function. There is no effective treatment option available for JMC. In previous cell-based assays, we found that certain N-terminally truncated PTH and PTHrP antagonist peptides function as inverse agonists and thus can reduce the high rates of basal cAMP signaling exhibited by the mutant PTHR1s of JMC in vitro. Here we explored whether one such inverse agonist ligand, [Leu11 ,dTrp12 ,Trp23 ,Tyr36 ]-PTHrP(7-36)NH2 (IA), can be effective in vivo and thus ameliorate the skeletal abnormalities that occur in transgenic mice expressing the PTHR1-H223R allele of JMC in osteoblastic cells via the collagen-1α1 promoter (C1HR mice). We observed that after 2 weeks of twice-daily injection and relative to vehicle controls, the IA analog resulted in significant improvements in key skeletal parameters that characterize the C1HR mice, because it reduced the excess trabecular bone mass, bone marrow fibrosis, and levels of bone turnover markers in blood and urine. The overall findings provide proof-of-concept support for the notion that inverse agonist ligands targeted to the mutant PTHR1 variants of JMC can have efficacy in vivo. Further studies of such PTHR1 ligand analogs could help open paths toward the first treatment option for this debilitating skeletal disorder. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Enanismo , Osteocondrodisplasias , Animales , Factor-23 de Crecimiento de Fibroblastos , Ligandos , Ratones , Ratones Transgénicos , Osteocondrodisplasias/tratamiento farmacológico , Osteocondrodisplasias/genética , Hormona Paratiroidea , Receptor de Hormona Paratiroídea Tipo 1/genética
6.
Life Sci ; 241: 117132, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31837327

RESUMEN

INTRODUCTION: This study aimed to verify the effects of cigarette smoke exposure in bone mineralization and fibrillar matrix composition as well as in bone healing after tibial fracture induction. METHODS: C57Bl/6 Mice were assigned according to exposure and surgery: C room air; F room air and tibia open osteotomy; CS cigarette smoke; FCS cigarette smoke and tibia open osteotomy. In order to study fracture healing we performed, under anesthesia, a bone injury through a tibial shaft osteotomy. Bone samples were obtained to evaluate bone histomorphometry, trabecular morphology and volume, trabecular collagen types composition and presence of inflammatory cytokines and growth factors. RESULTS: CS exposure significantly reduced the thickness of bone trabeculae associated with decrease in mineralizing surface and mineral deposition rate, leading a lower bone formation rate and longer mineralization time. Resorption surface and osteoclastic surface were greater in the CS group, attesting increased resorptive action. There was a decrease in type I collagen deposition and genes expression in the CS and FCS groups compared to C group and in contrast there was an increase in type V collagen deposition and genes expression in the CS, FC and FSC groups compared to C group. Also, CS exposure induced a decrease in bone forming cytokines and an increase in inflammatory associated cytokines, and these changes were intensified under fracture conditions. CONCLUSION: Cigarette smoke exposure alters bone matrix composition and worsens bone mineralization, leading to bone fragility by increasing collagen V synthesis and deposition and impairing collagen I fibril forming and assembling. And these deleterious effects contributed to the worsening in fracture healing after tibia osteotomy.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Fumar Cigarrillos/efectos adversos , Osteogénesis/efectos de los fármacos , Humo/efectos adversos , Tibia/patología , Fracturas de la Tibia/patología , Animales , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Tibia/efectos de los fármacos , Tibia/lesiones , Tibia/metabolismo , Fracturas de la Tibia/etiología , Fracturas de la Tibia/metabolismo
7.
Endocrinology ; 160(10): 2204-2214, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31237611

RESUMEN

Phosphate homeostasis is critical for many cellular processes and is tightly regulated. The sodium-dependent phosphate cotransporter, NaPi2a, is the major regulator of urinary phosphate reabsorption in the renal proximal tubule. Its activity is dependent upon its brush border localization that is regulated by fibroblast growth factor 23 (FGF23) and PTH. High levels of FGF23, as are seen in the Hyp mouse model of human X-linked hypophosphatemia, lead to renal phosphate wasting. Long-term treatment of Hyp mice with 1,25-dihydroxyvitamin D (1,25D) or 1,25D analogues has been shown to improve renal phosphate wasting in the setting of increased FGF23 mRNA expression. Studies were undertaken to define the cellular and molecular basis for this apparent FGF23 resistance. 1,25D increased FGF23 protein levels in the cortical bone and circulation of Hyp mice but did not impair FGF23 cleavage. 1,25D attenuated urinary phosphate wasting as early as one hour postadministration, without suppressing FGF23 receptor/coreceptor expression. Although 1,25D treatment induced expression of early growth response 1, an early FGF23 responsive gene required for its phosphaturic effects, it paradoxically enhanced renal phosphate reabsorption and NaPi2a protein expression in renal brush border membranes (BBMs) within one hour. The Na-H+ exchange regulatory factor 1 (NHERF1) is a scaffolding protein thought to anchor NaPi2a to the BBM. Although 1,25D did not alter NHERF1 protein levels acutely, it enhanced NHERF1-NaPi2a interactions in Hyp mice. 1,25D also prevented the decrease in NHERF1/NaPi2a interactions in PTH-treated wild-type mice. Thus, these investigations identify a novel role for 1,25D in the hormonal regulation of renal phosphate handling.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Hipofosfatemia Familiar/prevención & control , Hipofosfatemia/genética , Túbulos Renales Proximales/citología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Vitamina D/análogos & derivados , Animales , Línea Celular , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipofosfatemia/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Transporte de Proteínas , Receptores de Factores de Crecimiento de Fibroblastos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Vitamina D/farmacología
8.
Development ; 145(15)2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30002128

RESUMEN

The bone tendon attachment site known as the enthesis comprises a transitional zone between bone and tendon, and plays an important role in enabling movement at this site. X-linked hypophosphatemia (XLH) is characterized by impaired activation of vitamin D, elevated serum FGF23 levels and low serum phosphate levels, which impair bone mineralization. Paradoxically, an important complication of XLH is mineralization of the enthesis (enthesopathy). Studies were undertaken to identify the cellular and molecular pathways important for normal post-natal enthesis maturation and to examine their role during the development of enthesopathy in mice with XLH (Hyp). The Achilles tendon entheses of Hyp mice demonstrate an expansion of hypertrophic-appearing chondrogenic cells by P14. Post-natally, cells in wild-type and Hyp entheses similarly descend from scleraxis- and Sox9-expressing progenitors; however, Hyp entheses exhibit an expansion of Sox9-expressing cells, and enhanced BMP and IHH signaling. These results support a role for enhanced BMP and IHH signaling in the development of enthesopathy in XLH.


Asunto(s)
Entesopatía/complicaciones , Entesopatía/genética , Raquitismo Hipofosfatémico/complicaciones , Raquitismo Hipofosfatémico/genética , Fosfatasa Alcalina/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Modelos Animales de Enfermedad , Entesopatía/tratamiento farmacológico , Entesopatía/patología , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/farmacología , Factores de Crecimiento de Fibroblastos/uso terapéutico , Proteínas Hedgehog/metabolismo , Masculino , Ratones Endogámicos C57BL , Raquitismo Hipofosfatémico/tratamiento farmacológico , Raquitismo Hipofosfatémico/patología , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacología , Vitamina D/uso terapéutico
9.
J Bone Miner Res ; 33(3): 499-509, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29083055

RESUMEN

Osteocytes remodel their surrounding perilacunar matrix and canalicular network to maintain skeletal homeostasis. Perilacunar/canalicular remodeling is also thought to play a role in determining bone quality. X-linked hypophosphatemia (XLH) is characterized by elevated serum fibroblast growth factor 23 (FGF23) levels, resulting in hypophosphatemia and decreased production of 1,25 dihydroxyvitamin D (1,25D). In addition to rickets and osteomalacia, long bones from mice with XLH (Hyp) have impaired whole-bone biomechanical integrity accompanied by increased osteocyte apoptosis. To address whether perilacunar/canalicular remodeling is altered in Hyp mice, histomorphometric analyses of tibia and 3D intravital microscopic analyses of calvaria were performed. These studies demonstrate that Hyp mice have larger osteocyte lacunae in both the tibia and calvaria, accompanied by enhanced osteocyte mRNA and protein expression of matrix metalloproteinase 13 (MMP13) and genes classically used by osteoclasts to resorb bone, such as cathepsin K (CTSK). Hyp mice also exhibit impaired canalicular organization, with a decrease in number and branching of canaliculi extending from tibial and calvarial lacunae. To determine whether improving mineral ion and hormone homeostasis attenuates the lacunocanalicular phenotype, Hyp mice were treated with 1,25D or FGF23 blocking antibody (FGF23Ab). Both therapies were shown to decrease osteocyte lacunar size and to improve canalicular organization in tibia and calvaria. 1,25D treatment of Hyp mice normalizes osteocyte expression of MMP13 and classic osteoclast markers, while FGF23Ab decreases expression of MMP13 and selected osteoclast markers. Taken together, these studies point to regulation of perilacunar/canalicular remodeling by physiologic stimuli including hypophosphatemia and 1,25D. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Raquitismo Hipofosfatémico Familiar/fisiopatología , Hormonas/uso terapéutico , Osteocitos/metabolismo , Animales , Anticuerpos/farmacología , Anticuerpos/uso terapéutico , Biomarcadores/metabolismo , Remodelación Ósea , Calcitriol/farmacología , Calcitriol/uso terapéutico , Hueso Cortical/efectos de los fármacos , Hueso Cortical/patología , Modelos Animales de Enfermedad , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/inmunología , Ratones Endogámicos C57BL , Osteocitos/efectos de los fármacos , Cráneo/efectos de los fármacos , Cráneo/patología , Tibia/efectos de los fármacos , Tibia/patología
11.
Nat Commun ; 7: 13176, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27759007

RESUMEN

Parathyroid hormone (PTH) activates receptors on osteocytes to orchestrate bone formation and resorption. Here we show that PTH inhibition of SOST (sclerostin), a WNT antagonist, requires HDAC4 and HDAC5, whereas PTH stimulation of RANKL, a stimulator of bone resorption, requires CRTC2. Salt inducible kinases (SIKs) control subcellular localization of HDAC4/5 and CRTC2. PTH regulates both HDAC4/5 and CRTC2 localization via phosphorylation and inhibition of SIK2. Like PTH, new small molecule SIK inhibitors cause decreased phosphorylation and increased nuclear translocation of HDAC4/5 and CRTC2. SIK inhibition mimics many of the effects of PTH in osteocytes as assessed by RNA-seq in cultured osteocytes and following in vivo administration. Once daily treatment with the small molecule SIK inhibitor YKL-05-099 increases bone formation and bone mass. Therefore, a major arm of PTH signalling in osteocytes involves SIK inhibition, and small molecule SIK inhibitors may be applied therapeutically to mimic skeletal effects of PTH.


Asunto(s)
Huesos/efectos de los fármacos , Osteocitos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Hormona Paratiroidea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Transporte Activo de Núcleo Celular/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Animales , Huesos/citología , Huesos/metabolismo , Regulación de la Expresión Génica , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/genética , Glicoproteínas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Noqueados , Osteocitos/citología , Osteocitos/metabolismo , Osteogénesis/genética , Hormona Paratiroidea/metabolismo , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Ligando RANK/antagonistas & inhibidores , Ligando RANK/genética , Ligando RANK/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Bone Miner Res ; 31(12): 2204-2214, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27324177

RESUMEN

Phosphate plays a critical role in chondrocyte maturation and skeletal mineralization. Studies examining the consequences of dietary phosphate restriction in growing mice demonstrated not only the development of rickets, but also a dramatic decrease in bone accompanied by increased marrow adipose tissue (MAT). Thus studies were undertaken to determine the effects of dietary phosphate restriction on bone formation and bone marrow stromal cell (BMSC) differentiation. Acute phosphate restriction of 28-day-old mice profoundly inhibited bone formation within 48 hours. It also resulted in increased mRNA expression of the early osteolineage markers Sox9 and Runt-related transcription factor 2 (Runx2), accompanied by decreased expression of the late osteolineage markers Osterix and Osteocalcin in BMSCs and osteoblasts, suggesting that phosphate restriction arrests osteoblast differentiation between Runx2 and Osterix. Increased expression of PPARγ and CEBPα, key regulators of adipogenic differentiation, was observed within 1 week of dietary phosphate restriction and was followed by a 13-fold increase in MAT at 3 weeks of phosphate restriction. In vitro phosphate restriction did not alter BMSC osteogenic or adipogenic colony formation, implicating aberrant paracrine or endocrine signaling in the in vivo phenotype. Because BMP signaling regulates the transition between Runx2 and Osterix, this pathway was interrogated. A dramatic decrease in pSmad1/5/9 immunoreactivity was observed in the osteoblasts of phosphate-restricted mice on day 31 (d31) and d35. This was accompanied by attenuated expression of the BMP target genes Id1, KLF10, and Foxc2, the latter of which promotes osteogenic and angiogenic differentiation while impairing adipogenesis. A decrease in expression of the Notch target gene Hey1, a BMP-regulated gene that governs angiogenesis, was also observed in phosphate-restricted mice, in association with decreased metaphyseal marrow vasculature. Whereas circulating phosphate levels are known to control growth plate maturation and skeletal mineralization, these studies reveal novel consequences of phosphate restriction in the regulation of bone formation and osteoblast differentiation. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Tejido Adiposo/patología , Médula Ósea/patología , Osteogénesis , Fosfatos/deficiencia , Adipocitos/patología , Animales , Composición Corporal , Médula Ósea/irrigación sanguínea , Proteínas Morfogenéticas Óseas/metabolismo , Resorción Ósea/patología , Diferenciación Celular , Femenino , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteoblastos/metabolismo , Osteoblastos/patología , Transducción de Señal
13.
J Bone Miner Res ; 31(5): 929-39, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26751835

RESUMEN

X-linked hypophosphatemia (XLH) is characterized by impaired renal tubular reabsorption of phosphate owing to increased circulating FGF23 levels, resulting in rickets in growing children and impaired bone mineralization. Increased FGF23 decreases renal brush border membrane sodium-dependent phosphate transporter IIa (Npt2a) causing renal phosphate wasting, impairs 1-α hydroxylation of 25-hydroxyvitamin D, and induces the vitamin D 24-hydroxylase, leading to inappropriately low circulating levels of 1,25-dihydroxyvitamin D (1,25D). The goal of therapy is prevention of rickets and improvement of growth in children by phosphate and 1,25D supplementation. However, this therapy is often complicated by hypercalcemia and nephrocalcinosis and does not always prevent hyperparathyroidism. To determine if 1,25D or blocking FGF23 action can improve the skeletal phenotype without phosphate supplementation, mice with XLH (Hyp) were treated with daily 1,25D repletion, FGF23 antibodies (FGF23Ab), or biweekly high-dose 1,25D from d2 to d75 without supplemental phosphate. All treatments maintained normocalcemia, increased serum phosphate, and normalized parathyroid hormone levels. They also prevented the loss of Npt2a, α-Klotho, and pERK1/2 immunoreactivity observed in the kidneys of untreated Hyp mice. Daily treatment with 1,25D decreased urine phosphate losses despite a marked increase in bone FGF23 mRNA and in circulating FGF23 levels. Daily 1,25D was more effective than other treatments in normalizing the growth plate and metaphyseal organization. In addition to being the only therapy that normalized lumbar vertebral height and body weight, daily 1,25D therapy normalized bone geometry and was more effective than FGF23Ab in improving trabecular bone structure. Daily 1,25D and FGF23Ab improved cortical microarchitecture and whole-bone biomechanical properties more so than biweekly 1,25D. Thus, monotherapy with 1,25D improves growth, skeletal microarchitecture, and bone strength in the absence of phosphate supplementation despite enhancing FGF23 expression, demonstrating that 1,25D has direct beneficial effects on the skeleton in XLH, independent of its role in phosphate homeostasis. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Calcitriol/farmacología , Raquitismo Hipofosfatémico Familiar , Factores de Crecimiento de Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Esqueleto , Animales , Modelos Animales de Enfermedad , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Raquitismo Hipofosfatémico Familiar/metabolismo , Raquitismo Hipofosfatémico Familiar/patología , Factor-23 de Crecimiento de Fibroblastos , Humanos , Ratones , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Esqueleto/metabolismo , Esqueleto/patología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo
14.
Development ; 143(2): 348-55, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26657770

RESUMEN

Extracellular phosphate plays a key role in growth plate maturation by inducing Erk1/2 (Mapk3/1) phosphorylation, leading to hypertrophic chondrocyte apoptosis. The Raf kinases induce Mek1/2 (Map2k1/2) and Erk1/2 phosphorylation; however, a role for Raf kinases in endochondral bone formation has not been identified. Ablation of both A-Raf (Araf) and B-Raf (Braf) in chondrocytes does not alter growth plate maturation. Because c-Raf (Raf1) phosphorylation is increased by extracellular phosphate and c-Raf is the predominant isoform expressed in hypertrophic chondrocytes, chondrocyte-specific c-Raf knockout mice (c-Raf(f/f);ColII-Cre(+)) were generated to define a role for c-Raf in growth plate maturation. In vivo studies demonstrated that loss of c-Raf in chondrocytes leads to expansion of the hypertrophic layer of the growth plate, with decreased phospho-Erk1/2 immunoreactivity and impaired hypertrophic chondrocyte apoptosis. However, cultured hypertrophic chondrocytes from these mice did not exhibit impairment of phosphate-induced Erk1/2 phosphorylation. Studies performed to reconcile the discrepancy between the in vitro and in vivo hypertrophic chondrocyte phenotypes revealed normal chondrocyte differentiation in c-Raf(f/f);ColII-Cre(+) mice and lack of compensatory increase in the expression of A-Raf and B-Raf. However, VEGF (Vegfa) immunoreactivity in the hypertrophic chondrocytes of c-Raf(f/f);ColII-Cre(+) mice was significantly reduced, associated with increased ubiquitylation of VEGF protein. Thus, c-Raf plays an important role in growth plate maturation by regulating vascular invasion, which is crucial for replacement of terminally differentiated hypertrophic chondrocytes by bone.


Asunto(s)
Placa de Crecimiento/citología , Placa de Crecimiento/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Femenino , Masculino , Ratones , Osteogénesis/genética , Osteogénesis/fisiología , Proteínas Proto-Oncogénicas c-raf/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...