Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(9): e0289362, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37676872

RESUMEN

Waste management practices are vital for human health and the environment in a world where natural resources stress is expected to increase with the growth of population. Our study aimed to evaluate the potential use of crop-livestock residue as a bulking agent associated with the ideal level of hydrated lime for the stabilization and sanitization of urban sewage sludge through the alkalization-composting process. Therefore, we determined the alkalization efficiency on the heavy metal concentration in urban sewage sludge, quantified the viable eggs of helminths in pure and alkalized sludge, and measured the rate of earthworms (Eisenia fetida) surviving in the vermicomposting process using different levels of alkalized urban sewage sludge associated with crop-livestock residue. Four sequential trials were carried out in a completely randomized design with three replicates. The lime alkalization reduced the levels of Ba, As, Pb, Cu, Cr, Mo, Ni, and Zn compared to the pure urban sewage sludge. Using 30% w/w of lime in the urban sewage sludge (SS-30) for composting process reduced the viable helminth eggs by 71, 72, and 69% for sugarcane bagasse (Saccharum officinarum; SB), fresh chopped Napier-grass (Pennisetum purpureum; NG), and bovine ruminal content (BR), respectively. The ideal level of hydrated lime for stabilization and sanitization of urban sewage sludge was found to be 30%, which was able to reduce the heavy metals. The residues have the potential as a bulking agent for the composting of urban sewage sludge when associated with alkalization. The lime alkalization decreases the total number of helminth eggs and the number of viable eggs. The possibility of starting a vermicomposting using the mixtures is promising, evidenced by the earthworm survival in composting urban sewage sludge mixed with crop-livestock residues after 45 days of composting. The earthworm survival is maintained by an association of at least 80% of the crop-livestock residues.


Asunto(s)
Cenchrus , Compostaje , Oligoquetos , Saccharum , Animales , Bovinos , Humanos , Celulosa , Ganado , Aguas del Alcantarillado
2.
Biomater Adv ; 133: 112642, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35034821

RESUMEN

Organ decellularization is one of the most promising approaches of tissue engineering to overcome the shortage of organs available for transplantation. However, there are key hurdles that still hinder its clinical application, and the lack of hemocompatibility of decellularized materials is a central one. In this work, we demonstrate that Custodiol (HTK solution), a common solution used in organ transplantation, increased the hemocompatibility of acellular scaffolds obtained from rat livers. We showed that Custodiol inhibited ex vivo, in vitro, and in vivo blood coagulation to such extent that allowed successful transplantation of whole-liver scaffolds into recipient animals. Scaffolds previously perfused with Custodiol showed no signs of platelet aggregation and maintained in vitro and in vivo cellular compatibility. Proteomic analysis revealed that proteins related to platelet aggregation were reduced in Custodiol samples while control samples were enriched with thrombogenicity-related proteins. We also identified distinct components that could potentially be involved with this anti-thrombogenic effect and thus require further investigation. Therefore, Custodiol perfusion emerge as a promising strategy to reduce the thrombogenicity of decellularized biomaterials and could benefit several applications of whole-organ tissue engineering.


Asunto(s)
Proteómica , Ingeniería de Tejidos , Animales , Glucosa , Hígado , Manitol , Perfusión , Cloruro de Potasio , Procaína , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA