Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 571(7763): E1, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31209304

RESUMEN

Change history: In this Article, the Acknowledgements section should have included that the work was supported in part by the Cure Alzheimer's Fund (CAF), and the final NIH grant acknowledged should have been 'U01MH119509' instead of 'RF1AG054012'. In Supplementary Table 2, the column labels 'early.pathology.mean' and 'late.pathology.mean' were reversed in each worksheet (that is, columns Y and Z). These errors have been corrected online.

2.
Nature ; 570(7761): 332-337, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31042697

RESUMEN

Alzheimer's disease is a pervasive neurodegenerative disorder, the molecular complexity of which remains poorly understood. Here, we analysed 80,660 single-nucleus transcriptomes from the prefrontal cortex of 48 individuals with varying degrees of Alzheimer's disease pathology. Across six major brain cell types, we identified transcriptionally distinct subpopulations, including those associated with pathology and characterized by regulators of myelination, inflammation, and neuron survival. The strongest disease-associated changes appeared early in pathological progression and were highly cell-type specific, whereas genes upregulated at late stages were common across cell types and primarily involved in the global stress response. Notably, we found that female cells were overrepresented in disease-associated subpopulations, and that transcriptional responses were substantially different between sexes in several cell types, including oligodendrocytes. Overall, myelination-related processes were recurrently perturbed in multiple cell types, suggesting that myelination has a key role in Alzheimer's disease pathophysiology. Our single-cell transcriptomic resource provides a blueprint for interrogating the molecular and cellular basis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Análisis de la Célula Individual , Transcriptoma , Envejecimiento/genética , Envejecimiento/patología , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Especificidad de Órganos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , ARN Mensajero/análisis , ARN Mensajero/genética , Análisis de Secuencia de ARN , Caracteres Sexuales
3.
Cell ; 177(2): 256-271.e22, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30879788

RESUMEN

We previously reported that inducing gamma oscillations with a non-invasive light flicker (gamma entrainment using sensory stimulus or GENUS) impacted pathology in the visual cortex of Alzheimer's disease mouse models. Here, we designed auditory tone stimulation that drove gamma frequency neural activity in auditory cortex (AC) and hippocampal CA1. Seven days of auditory GENUS improved spatial and recognition memory and reduced amyloid in AC and hippocampus of 5XFAD mice. Changes in activation responses were evident in microglia, astrocytes, and vasculature. Auditory GENUS also reduced phosphorylated tau in the P301S tauopathy model. Furthermore, combined auditory and visual GENUS, but not either alone, produced microglial-clustering responses, and decreased amyloid in medial prefrontal cortex. Whole brain analysis using SHIELD revealed widespread reduction of amyloid plaques throughout neocortex after multi-sensory GENUS. Thus, GENUS can be achieved through multiple sensory modalities with wide-ranging effects across multiple brain areas to improve cognitive function.


Asunto(s)
Estimulación Acústica/métodos , Enfermedad de Alzheimer/terapia , Cognición/fisiología , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Percepción Auditiva/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ritmo Gamma/fisiología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Placa Amiloide/metabolismo
4.
Nat Protoc ; 13(8): 1850-1868, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30072722

RESUMEN

Microglia, the primary immune cells of the brain, play a key role in pathological and normal brain function. Growing efforts aim to reveal how these cells may be harnessed to treat both neurodegenerative diseases such as Alzheimer's and developmental disorders such as schizophrenia and autism. We recently showed that using noninvasive exposure to 40-Hz white-light (4,000 K) flicker to drive 40-Hz neural activity transforms microglia into an engulfing state and reduces amyloid beta, a peptide thought to initiate neurotoxic events in Alzheimer's disease (AD). This article describes how to construct an LED-based light-flicker apparatus, expose animals to 40-Hz flicker and control conditions, and perform downstream assays to study the effects of these stimuli. Light flicker is simple, faster to implement, and noninvasive, as compared with driving 40-Hz activity using optogenetics; however, it does not target specific cell types, as is achievable with optogenetics. This noninvasive approach to driving 40-Hz neural activity should enable further research into the interactions between neural activity, molecular pathology, and the brain's immune system. Construction of the light-flicker system requires ~1 d and some electronics experience or available guidance. The flicker manipulation and assessment can be completed in a few days, depending on the experimental design.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Endocitosis/efectos de la radiación , Luz , Microglía/metabolismo , Microglía/efectos de la radiación , Animales , Biotransformación , Ratones
5.
Nature ; 562(7725): E1, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30046102

RESUMEN

Change history: In this Article, Extended Data Fig. 8 and Extended Data Table 1 contained errors, which have been corrected online.

6.
Elife ; 52016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28001126

RESUMEN

The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway.


Asunto(s)
Miedo , Retroalimentación Fisiológica , Hipocampo/fisiología , Memoria , MicroARNs/metabolismo , Neuronas/fisiología , Vesículas Sinápticas/metabolismo , Animales , Ratones , Neurotransmisores/metabolismo , Receptores de Glutamato/metabolismo
7.
Nature ; 540(7632): 230-235, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27929004

RESUMEN

Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-ß (Aß)1-40 and Aß 1-42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aß. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aß1-40 and Aß1-42 levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Ritmo Gamma , Microglía/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/prevención & control , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Forma de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Ritmo Gamma/efectos de la radiación , Interneuronas/metabolismo , Interneuronas/efectos de la radiación , Luz , Masculino , Ratones , Microglía/citología , Microglía/efectos de la radiación , Optogenética , Parvalbúminas/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/terapia , Transcriptoma , Corteza Visual/fisiología , Corteza Visual/efectos de la radiación
8.
Nat Neurosci ; 19(11): 1477-1488, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27694995

RESUMEN

De novo mutations in CHD8 are strongly associated with autism spectrum disorder, but the basic biology of CHD8 remains poorly understood. Here we report that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice. Transcriptome analysis revealed that while Chd8 stimulates the transcription of cell cycle genes, it also precludes the induction of neural-specific genes by regulating the expression of PRC2 complex components. Furthermore, knockdown of Chd8 disrupts the expression of key transducers of Wnt signaling, and enhancing Wnt signaling rescues the transcriptional and behavioral deficits caused by Chd8 knockdown. We propose that these roles of Chd8 and the dynamics of Chd8 expression during development help negotiate the fine balance between neural progenitor proliferation and differentiation. Together, these observations provide new insights into the neurodevelopmental role of Chd8.


Asunto(s)
Trastorno del Espectro Autista/genética , Ciclo Celular/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Neurogénesis , Transcripción Genética , Vía de Señalización Wnt/genética , Animales , División Celular/genética , Femenino , Ratones , Células-Madre Neurales/metabolismo
10.
J Neurovirol ; 22(3): 336-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26631080

RESUMEN

Theiler's murine encephalomyelitis virus (TMEV) infects the central nervous system of mice and causes a demyelinating disease that is a model for multiple sclerosis. During the chronic phase of the disease, TMEV persists in oligodendrocytes and macrophages. Lack of remyelination has been attributed to insufficient proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), but the molecular mechanisms remain unknown. Here, we employed pluripotent stem cell technologies to generate pure populations of mouse OPCs to study the temporal and molecular effects of TMEV infection. Global transcriptome analysis of RNA sequencing data revealed that TMEV infection of OPCs caused significant up-regulation of 1926 genes, whereas 1853 genes were significantly down-regulated compared to uninfected cells. Pathway analysis revealed that TMEV disrupted many genes required for OPC growth and maturation. Down-regulation of Olig2, a transcription factor necessary for OPC proliferation, was confirmed by real-time PCR, immunofluorescence microscopy, and western blot analysis. Depletion of Olig2 was not found to be specific to viral strain and did not require expression of the leader (L) protein, which is a multifunctional protein important for persistence, modulation of gene expression, and cell death. These data suggest that direct infection of OPCs by TMEV may inhibit remyelination during the chronic phase of TMEV-induced demyelinating disease.


Asunto(s)
Enfermedades Desmielinizantes/virología , Interacciones Huésped-Patógeno , Células Precursoras de Oligodendrocitos/virología , Factor de Transcripción 2 de los Oligodendrocitos/genética , Células Madre Pluripotentes/virología , Theilovirus/genética , Animales , Diferenciación Celular , Línea Celular , Cricetinae , Enfermedades Desmielinizantes/patología , Células Epiteliales/virología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Anotación de Secuencia Molecular , Células Precursoras de Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/deficiencia , Células Madre Pluripotentes/metabolismo , Cultivo Primario de Células , Theilovirus/metabolismo , Transcriptoma
11.
Nat Neurosci ; 18(7): 1008-16, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26005852

RESUMEN

Noncoding variants in the human MIR137 gene locus increase schizophrenia risk with genome-wide significance. However, the functional consequence of these risk alleles is unknown. Here we examined induced human neurons harboring the minor alleles of four disease-associated single nucleotide polymorphisms in MIR137. We observed increased MIR137 levels compared to those in major allele-carrying cells. microRNA-137 gain of function caused downregulation of the presynaptic target genes complexin-1 (Cplx1), Nsf and synaptotagmin-1 (Syt1), leading to impaired vesicle release. In vivo, miR-137 gain of function resulted in changes in synaptic vesicle pool distribution, impaired induction of mossy fiber long-term potentiation and deficits in hippocampus-dependent learning and memory. By sequestering endogenous miR-137, we were able to ameliorate the synaptic phenotypes. Moreover, reinstatement of Syt1 expression partially restored synaptic plasticity, demonstrating the importance of Syt1 as a miR-137 target. Our data provide new insight into the mechanism by which miR-137 dysregulation can impair synaptic plasticity in the hippocampus.


Asunto(s)
Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Plasticidad Neuronal/genética , Esquizofrenia/genética , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Alelos , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Fibroblastos , Sitios Genéticos , Células HEK293 , Humanos , Aprendizaje/fisiología , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Polimorfismo de Nucleótido Simple , Sinaptotagmina I/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA