Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 2(1)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30683687

RESUMEN

Mitochondria have a compartmentalized gene expression system dedicated to the synthesis of membrane proteins essential for oxidative phosphorylation. Responsive quality control mechanisms are needed to ensure that aberrant protein synthesis does not disrupt mitochondrial function. Pathogenic mutations that impede the function of the mitochondrial matrix quality control protease complex composed of AFG3L2 and paraplegin cause a multifaceted clinical syndrome. At the cell and molecular level, defects to this quality control complex are defined by impairment to mitochondrial form and function. Here, we establish the etiology of these phenotypes. We show how disruptions to the quality control of mitochondrial protein synthesis trigger a sequential stress response characterized first by OMA1 activation followed by loss of mitochondrial ribosomes and by remodelling of mitochondrial inner membrane ultrastructure. Inhibiting mitochondrial protein synthesis with chloramphenicol completely blocks this stress response. Together, our data establish a mechanism linking major cell biological phenotypes of AFG3L2 pathogenesis and show how modulation of mitochondrial protein synthesis can exert a beneficial effect on organelle homeostasis.


Asunto(s)
Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas , Animales , Fibroblastos/metabolismo , GTP Fosfohidrolasas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Metaloendopeptidasas/metabolismo , Ratones , Membranas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Mutación , Fenotipo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transfección
2.
Nat Commun ; 9(1): 3966, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262910

RESUMEN

Post-transcriptional RNA modifications play a critical role in the pathogenesis of human mitochondrial disorders, but the mechanisms by which specific modifications affect mitochondrial protein synthesis remain poorly understood. Here we used a quantitative RNA sequencing approach to investigate, at nucleotide resolution, the stoichiometry and methyl modifications of the entire mitochondrial tRNA pool, and establish the relevance to human disease. We discovered that a N1-methyladenosine (m1A) modification is missing at position 58 in the mitochondrial tRNALys of patients with the mitochondrial DNA mutation m.8344 A > G associated with MERRF (myoclonus epilepsy, ragged-red fibers). By restoring the modification on the mitochondrial tRNALys, we demonstrated the importance of the m1A58 to translation elongation and the stability of selected nascent chains. Our data indicates regulation of post-transcriptional modifications on mitochondrial tRNAs is finely tuned for the control of mitochondrial gene expression. Collectively, our findings provide novel insight into the regulation of mitochondrial tRNAs and reveal greater complexity to the molecular pathogenesis of MERRF.


Asunto(s)
Mitocondrias/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Lisina/metabolismo , Secuencia de Bases , Células HEK293 , Humanos , Síndrome MERRF/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Conformación de Ácido Nucleico , ARN de Transferencia de Lisina/química
3.
EMBO Mol Med ; 10(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30201738

RESUMEN

OXA1, the mitochondrial member of the YidC/Alb3/Oxa1 membrane protein insertase family, is required for the assembly of oxidative phosphorylation complexes IV and V in yeast. However, depletion of human OXA1 (OXA1L) was previously reported to impair assembly of complexes I and V only. We report a patient presenting with severe encephalopathy, hypotonia and developmental delay who died at 5 years showing complex IV deficiency in skeletal muscle. Whole exome sequencing identified biallelic OXA1L variants (c.500_507dup, p.(Ser170Glnfs*18) and c.620G>T, p.(Cys207Phe)) that segregated with disease. Patient muscle and fibroblasts showed decreased OXA1L and subunits of complexes IV and V. Crucially, expression of wild-type human OXA1L in patient fibroblasts rescued the complex IV and V defects. Targeted depletion of OXA1L in human cells or Drosophila melanogaster caused defects in the assembly of complexes I, IV and V, consistent with patient data. Immunoprecipitation of OXA1L revealed the enrichment of mtDNA-encoded subunits of complexes I, IV and V. Our data verify the pathogenicity of these OXA1L variants and demonstrate that OXA1L is required for the assembly of multiple respiratory chain complexes.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación/genética , Proteínas Nucleares/genética , Fosforilación Oxidativa , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Preescolar , ADN Mitocondrial/genética , Drosophila , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/química , Resultado Fatal , Fibroblastos/metabolismo , Células HEK293 , Humanos , Lactante , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Neuroimagen , Proteínas Nucleares/química , Linaje
4.
Eur J Med Genet ; 60(6): 345-351, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28412374

RESUMEN

We describe a novel frameshift mutation in the mitochondrial ATP6 gene in a 4-year-old girl associated with ataxia, microcephaly, developmental delay and intellectual disability. A heteroplasmic frameshift mutation in the MT-ATP6 gene was confirmed in the patient's skeletal muscle and blood. The mutation was not detectable in the mother's DNA extracted from blood or buccal cells. Enzymatic and oxymetric analysis of the mitochondrial respiratory system in the patients' skeletal muscle and skin fibroblasts demonstrated an isolated complex V deficiency. Native PAGE with subsequent immunoblotting for complex V revealed impaired complex V assembly and accumulation of ATPase subcomplexes. Whilst northern blotting confirmed equal presence of ATP8/6 mRNA, metabolic 35S-labelling of mitochondrial translation products showed a severe depletion of the ATP6 protein together with aberrant translation product accumulation. In conclusion, this novel isolated complex V defect expands the clinical and genetic spectrum of mitochondrial defects of complex V deficiency. Furthermore, this work confirms the benefit of native PAGE as an additional diagnostic method for the identification of OXPHOS defects, as the presence of complex V subcomplexes is associated with pathogenic mutations of mtDNA.


Asunto(s)
Ataxia/genética , Mutación del Sistema de Lectura , Encefalomiopatías Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Ataxia/diagnóstico , Células Cultivadas , Niño , Femenino , Fibroblastos/metabolismo , Humanos , Encefalomiopatías Mitocondriales/diagnóstico , ATPasas de Translocación de Protón Mitocondriales/deficiencia , Músculo Esquelético/metabolismo , Síndrome
5.
Hum Mol Genet ; 25(4): 706-14, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26681804

RESUMEN

Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome.


Asunto(s)
ADN Mitocondrial/fisiología , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Haplotipos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NZB , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Modelos Animales
6.
J Cell Biol ; 211(2): 373-89, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26504172

RESUMEN

Mitochondrial ribosomes synthesize a subset of hydrophobic proteins required for assembly of the oxidative phosphorylation complexes. This process requires temporal and spatial coordination and regulation, so quality control of mitochondrial protein synthesis is paramount to maintain proteostasis. We show how impaired turnover of de novo mitochondrial proteins leads to aberrant protein accumulation in the mitochondrial inner membrane. This creates a stress in the inner membrane that progressively dissipates the mitochondrial membrane potential, which in turn stalls mitochondrial protein synthesis and fragments the mitochondrial network. The mitochondrial m-AAA protease subunit AFG3L2 is critical to this surveillance mechanism that we propose acts as a sensor to couple the synthesis of mitochondrial proteins with organelle fitness, thus ensuring coordinated assembly of the oxidative phosphorylation complexes from two sets of ribosomes.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/patología , Proteínas Mitocondriales/biosíntesis , Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Línea Celular , Membrana Celular/fisiología , Células HEK293 , Humanos , Ácidos Hidroxámicos/farmacología , Potencial de la Membrana Mitocondrial/fisiología , Metaloproteasas/genética , Metaloproteasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Fosforilación Oxidativa , Factores de Acoplamiento de la Fosforilación Oxidativa/biosíntesis , Biosíntesis de Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño
7.
Genetics ; 200(1): 221-35, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25808953

RESUMEN

Mammalian mitochondrial DNA (mtDNA) is a high-copy maternally inherited genome essential for aerobic energy metabolism. Mutations in mtDNA can lead to heteroplasmy, the co-occurence of two different mtDNA variants in the same cell, which can segregate in a tissue-specific manner affecting the onset and severity of mitochondrial dysfunction. To investigate mechanisms regulating mtDNA segregation we use a heteroplasmic mouse model with two polymorphic neutral mtDNA haplotypes (NZB and BALB) that displays tissue-specific and age-dependent selection for mtDNA haplotypes. In the hematopoietic compartment there is selection for the BALB mtDNA haplotype, a phenotype that can be modified by allelic variants of Gimap3. Gimap3 is a tail-anchored member of the GTPase of the immunity-associated protein (Gimap) family of protein scaffolds important for leukocyte development and survival. Here we show how the expression of two murine Gimap3 alleles from Mus musculus domesticus and M. m. castaneus differentially affect mtDNA segregation. The castaneus allele has incorporated a uORF (upstream open reading frame) in-frame with the Gimap3 mRNA that impairs translation and imparts a negative effect on the steady-state protein abundance. We found that quantitative changes in the expression of Gimap3 and the paralogue Gimap5, which encodes a lysosomal protein, affect mtDNA segregation in the mouse hematopoietic tissues. We also show that Gimap3 localizes to the endoplasmic reticulum and not mitochondria as previously reported. Collectively these data show that the abundance of protein scaffolds on the endoplasmic reticulum and lysosomes are important to the segregation of the mitochondrial genome in the mouse hematopoietic compartment.


Asunto(s)
ADN Mitocondrial/genética , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Proteínas de la Membrana/genética , Células 3T3 , Alelos , Secuencia de Aminoácidos , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Haplotipos , Linfocitos/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Transporte de Proteínas
8.
Curr Biol ; 23(6): 535-41, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23453957

RESUMEN

Proliferating cells require coordinated gene expression between the nucleus and mitochondria in order to divide, ensuring sufficient organelle number in daughter cells [1]. However, the machinery and mechanisms whereby proliferating cells monitor mitochondria and coordinate organelle biosynthesis remain poorly understood. Antibiotics inhibiting mitochondrial translation have emerged as therapeutics for human cancers because they block cell proliferation [2, 3]. These proliferative defects were attributable to modest decreases in mitochondrial respiration [3, 4], even though tumors are mainly glycolytic [5] and mitochondrial respiratory chain function appears to play a minor role in cell proliferation in vivo [6]. Here we challenge this interpretation by demonstrating that one class of antiproliferative antibiotic induces stalled mitochondrial ribosomes, which triggers a mitochondrial ribosome and RNA decay pathway. Rescue of the stalled mitochondrial ribosomes initiates a retrograde signaling response to block cell proliferation and occurs prior to any loss of mitochondrial respiration. The loss of respiratory chain function is simply a downstream effect of impaired mitochondrial translation and not the antiproliferative signal. This mitochondrial ribosome quality-control pathway is actively monitored in cells and constitutes an important organelle checkpoint for cell division.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Estabilidad del ARN , Proteínas Ribosómicas/metabolismo , Amidohidrolasas/metabolismo , Animales , Antibacterianos/farmacología , Proliferación Celular , Respiración de la Célula , Cloranfenicol/farmacología , Transporte de Electrón , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Humanos , Ácidos Hidroxámicos/farmacología , Ratones , Transducción de Señal
9.
PLoS Genet ; 6(10): e1001161, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20976251

RESUMEN

Mitochondrial DNA (mtDNA) sequence variants segregate in mutation and tissue-specific manners, but the mechanisms remain unknown. The segregation pattern of pathogenic mtDNA mutations is a major determinant of the onset and severity of disease. Using a heteroplasmic mouse model, we demonstrate that Gimap3, an outer mitochondrial membrane GTPase, is a critical regulator of this process in leukocytes. Gimap3 is important for T cell development and survival, suggesting that leukocyte survival may be a key factor in the genetic regulation of mtDNA sequence variants and in modulating human mitochondrial diseases.


Asunto(s)
ADN Mitocondrial/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Haplotipos/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Embrión de Mamíferos/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Sistema Hematopoyético/metabolismo , Humanos , Riñón/metabolismo , Leucocitos/citología , Leucocitos/metabolismo , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA