RESUMEN
BACKGROUND: Complex bone defects are challenging to treat. Autografting is the gold standard for regenerating bone defects; however, its limitations include donor-site morbidity and increased surgical complexity. Advancements in 3D bioprinting (3DBP) offer a promising alternative for viable bone grafts. In this experiment, gels composed of varying levels of gelatin methacrylate (GelMA) and hydroxyapatite (HA) and gelatin concentrations are explored. The objective was to increase the hydroxyapatite content and find the upper limit before the printability was compromised and determine its effect on the mechanical properties and cell viability. METHODS: Design of Experiments (DoE) was used to design 13 hydrogel bioinks of various GelMA/HA concentrations. These bioinks were assessed in terms of their pipettability and equilibrium modulus. An optimal bioink was designed using the DoE data to produce the greatest stiffness while still being pipettable. Three bioinks, one with the DoE-designed maximal stiffness, one with the experimentally defined maximal stiffness, and a literature-based control, were then printed using a 3D bioprinter and assessed for print fidelity. The resulting hydrogels were combined with human bone-marrow-derived mesenchymal stromal cells (hMSCs) and evaluated for cell viability. RESULTS: The DoE ANOVA analysis indicated that the augmented three-level factorial design model used was a good fit (p < 0.0001). Using the model, DoE correctly predicted that a composite hydrogel consisting of 12.3% GelMA, 15.7% HA, and 2% gelatin would produce the maximum equilibrium modulus while still being pipettable. The hydrogel with the most optimal print fidelity was 10% GelMA, 2% HA, and 5% gelatin. There were no significant differences in the cell viability within the hydrogels from day 2 to day 7 (p > 0.05). There was, however, a significantly lower cell viability in the gel composed of 12.3% GelMA, 15.7% HA, and 2% gelatin compared to the other gels with a lower HA concentration (p < 0.05), showing that a higher HA content or print pressure may be cytotoxic within hydrogels. CONCLUSIONS: Extrusion-based 3DBP offers significant advantages for bone-tissue implants due to its high customizability. This study demonstrates that it is possible to create printable bone-like grafts from GelMA and HA with an increased HA content, favorable mechanical properties (145 kPa), and a greater than 80% cell viability.
RESUMEN
The surface zone of articular cartilage is the first area impacted by cartilage defects, commonly resulting in osteoarthritis. Chondrocytes in the surface zone of articular cartilage synthesize and secrete lubricin, a proteoglycan that functions as a lubricant protecting the deeper layers from shear stress. Notably, 3D bioprinting is a tissue engineering technique that uses cells encapsulated in biomaterials to fabricate 3D constructs. Gelatin methacrylate (GelMA) is a frequently used biomaterial for 3D bioprinting cartilage. Oxidized methacrylated alginate (OMA) is a chemically modified alginate designed for its tunable degradation rate and mechanical properties. To determine an optimal combination of GelMA and OMA for lubricin expression, we used our novel high-throughput human articular chondrocyte reporter system. Primary human chondrocytes were transduced with PRG4 (lubricin) promoter-driven Gaussia luciferase, allowing for temporal assessment of lubricin expression. A lubricin expression-driven Design of Experiment screen and subsequent validation identified 14% GelMA/2% OMA for further study. Therefore, DoE optimized 14% GelMA/2% OMA, 14% GelMA control, and 16% GelMA (total solid content control) were 3D bioprinted. The combination of lubricin protein expression and shape retention over the 22 days in culture, successfully determined the 14% GelMA/2%OMA to be the optimal formulation for lubricin secretion. This strategy allows for rapid analysis of the role(s) of biomaterial composition, stiffness or other cell manipulations on lubricin expression by chondrocytes, which may improve therapeutic strategies for cartilage regeneration.
RESUMEN
Few studies have investigated the effect of a monosaturated diet high in ω-9 on osteoporosis. We hypothesized that omega-9 (ω-9) protects ovariectomized (OVX) mice from a decline in bone microarchitecture, tissue loss, and mechanical strength, thereby serving as a modifiable dietary intervention against osteoporotic deterioration. Female C57BL/6J mice were assigned to sham-ovariectomy, ovariectomy, or ovariectomy + estradiol treatment prior to switching their feed to a diet high in ω-9 for 12 weeks. Tibiae were evaluated using DMA, 3-point-bending, histomorphometry, and microCT. A significant decrease in lean mass (p = 0.05), tibial area (p = 0.009), and cross-sectional moment of inertia (p = 0.028) was measured in OVX mice compared to the control. A trend was seen where OVX bone displayed increased elastic modulus, ductility, storage modulus, and loss modulus, suggesting the ω-9 diet paradoxically increased both stiffness and viscosity. This implies beneficial alterations on the macro-structural, and micro-tissue level in OVX bone, potentially decreasing the fracture risk. Supporting this, no significant differences in ultimate, fracture, and yield stresses were measured. A diet high in ω-9 did not prevent microarchitectural deterioration, nevertheless, healthy tibial strength and resistance to fracture was maintained via mechanisms independent of bone structure/shape. Further investigation of ω-9 as a therapeutic in osteoporosis is warranted.
Asunto(s)
Fracturas Óseas , Osteoporosis , Ratones , Femenino , Animales , Humanos , Modelos Animales de Enfermedad , Estudios Transversales , Viscosidad , Ratones Endogámicos C57BL , Osteoporosis/tratamiento farmacológico , Dieta , Ovariectomía , Densidad ÓseaRESUMEN
Gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) are frequently used biomaterials for 3D bioprinting, with individual well-established material characteristics. To identify an ideal combination of GelMA and HAMA for chondrogenesis, a novel, primary human chondrocyte COL2A1-Gaussia luciferase reporter system (HuCol2gLuc) was developed. With this non-destructive, high-throughput temporal assay, Gaussia luciferase is secreted from the cells and used as a proxy for measuring type II collagen production. GelMA:HAMA ratios were screened using the reporter system before proceeding to 3D bioprinting. This method is efficient, saving on time and materials, resulting in a streamlined process of biomaterial optimization. The screen revealed that the addition of HAMA to GelMA improved chondrogenesis over GelMA (15%) alone. Storage moduli were measured using dynamic mechanical analysis of the same GelMA:HAMA ratios and established an initial threshold for chondrogenesis of â¼30kPa. To determine if biomaterial storage moduli impact cell mobility, human primary chondrocytes transduced with green fluorescent protein (GFP) were 3D bioprinted in either 1:1 or 2:1 ratios with storage moduli of 32kPa and 57.9kPa, respectively. We found that reduced cell mobility, in the stiffer biomaterial, had higher type II collagen expression, than the softer material with more cell mobility. Finally, after 3D bioprinting with HuCol2gLuc cells we successfully identified an optimal combination (2:1) of GelMA:HAMA and photo-crosslinking time (38s) for chondrogenesis. STATEMENT OF SIGNIFICANCE: One challenge of 3D bioprinting is identifying ideal biomaterials that stimulate articular cartilage development. To identify an optimal combination of gelatin methacrylate and hyaluronic acid methacrylate for chondrogenesis we developed a primary human chondrocyte type II collagen Gaussia luciferase reporter cell (HuCol2gLuc). This non-destructive, high-throughput assay uses a secreted Gaussia luciferase as a proxy for temporal type II collagen production. This reporter system streamlines the biomaterial optimization process before 3D bioprinting. We also used it to determine the level of stiffness required for chondrogenesis. And for the first time, we quantified chondrocyte mobility in a 3D bioprinted construct. Together these results indicate that a biomaterial with a higher storage modulus and less cell mobility, improves chondrogenesis.
Asunto(s)
Materiales Biocompatibles , Bioimpresión , Materiales Biocompatibles/farmacología , Bioimpresión/métodos , Colágeno Tipo II , Gelatina , Proteínas Fluorescentes Verdes , Humanos , Ácido Hialurónico/farmacología , Hidrogeles , Metacrilatos/farmacología , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del TejidoRESUMEN
BACKGROUND: Joint degeneration and large or complex bone defects are a significant source of morbidity and diminished quality of life worldwide. There is an unmet need for a functional implant with near-native biomechanical properties. The potential for their generation using 3D bioprinting (3DBP)-based tissue engineering methods was assessed. We systematically reviewed the current state of 3DBP in orthoregeneration. METHODS: This review was performed using PubMed and Web of Science. Primary research articles reporting 3DBP of cartilage, bone, vasculature, and their osteochondral and vascular bone composites were considered. Full text English articles were analyzed. RESULTS: Over 1300 studies were retrieved, after removing duplicates, 1046 studies remained. After inclusion and exclusion criteria were applied, 114 articles were analyzed fully. Bioink material types and combinations were tallied. Cell types and testing methods were also analyzed. Nearly all papers determined the effect of 3DBP on cell survival. Bioink material physical characterization using gelation and rheology, and construct biomechanics were performed. In vitro testing methods assessed biochemistry, markers of extracellular matrix production and/or cell differentiation into respective lineages. In vivo proof-of-concept studies included full-thickness bone and joint defects as well as subcutaneous implantation in rodents followed by histological and µCT analyses to demonstrate implant growth and integration into surrounding native tissues. CONCLUSIONS: Despite its relative infancy, 3DBP is making an impact in joint and bone engineering. Several groups have demonstrated preclinical efficacy of mechanically robust constructs which integrate into articular joint defects in small animals. However, notable obstacles remain. Notably, researchers encountered pitfalls in scaling up constructs and establishing implant function and viability in long term animal models. Further, to translate from the laboratory to the clinic, standardized quality control metrics such as construct stiffness and graft integration metrics should be established with investigator consensus. While there is much work to be done, 3DBP implants have great potential to treat degenerative joint diseases and provide benefit to patients globally.
RESUMEN
The influence of diet on the development of osteoporosis is significant and not fully understood. This study investigated the effect of diets of varying lipid profiles and ω-3, ω-6 and ω-9 composition on the structural and mechanical properties of bone. The hypothesis studied was that a diet high in saturated fat would induce osteoporosis and produce an overall increased detrimental bony response when compared with a diet high in unsaturated ω-6, or ω-9. Male C57BL/6J mice were fed either a control diet, 50:50 mix (saturated:unsaturated) high in ω-9 (HFD50:50), a diet high in saturated fat (HSF) or a polyunsaturated fat diet high in ω-6 (PUFA) over an 8-week duration. Tibiae were retrieved and evaluated using DMA, 3-point-bending, histomorphometry, and microCT. Mice fed a HSF diet displayed key features characteristic of osteoporosis. The loss tangent was significantly increased in the HFD50:50 diet group compared with control (p = 0.016) and PUFA-fed animals (p = 0.049). HFD50:50-fed mice presented with an increased viscous component, longer tibiae, increased loss modulus (p = 0.009), and ultimate stress, smaller microcracks (p < 0.001), and increased trabecular width (p = 0.002) compared with control animals. A diet high in ω-9 resulted in an overall superior bone response and further analysis of its role in bone health is warranted.
Asunto(s)
Ácidos Grasos Omega-3 , Osteoporosis , Animales , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos/farmacología , Ácidos Grasos Omega-3/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoporosis/etiologíaRESUMEN
Age-related bone loss is inevitable in both men and women and there will soon be more people of extreme old age than ever before. Osteoporosis is a common chronic disease and as the proportion of older people, rate of obesity and the length of life increases, a rise in age-related degenerating bone diseases, disability, and prolonged dependency is projected. Fragility fractures are one of the most severe complications associated with both primary and secondary osteoporosis and current treatment strategies target weight-bearing exercise and pharmacological intervention, both with limited long-term success. Obesity and osteoporosis are intimately interrelated, and diet is a variable that plays a significant role in bone regeneration and repair. The Western Diet is characterized by its unhealthy components, specifically excess amounts of saturated fat intake. This review examines the impact of saturated and polyunsaturated fatty acid consumption on chronic inflammation, osteogenesis, bone architecture, and strength and explores the hypothesis that dietary polyunsaturated fats have a beneficial effect on osteogenesis, reducing bone loss by decreasing chronic inflammation, and activating bone resorption through key cellular and molecular mechanisms in our aging population. We conclude that aging, obesity and a diet high in saturated fatty acids significantly impairs bone regeneration and repair and that consumption of ω-3 polyunsaturated fatty acids is associated with significantly increased bone regeneration, improved microarchitecture and structural strength. However, ω-6 polyunsaturated fatty acids were typically pro-inflammatory and have been associated with an increased fracture risk. This review suggests a potential role for ω-3 fatty acids as a non-pharmacological dietary method of reducing bone loss in our aging population. We also conclude that contemporary amendments to the formal nutritional recommendations made by the Food and Nutrition Board may be necessary such that our aging population is directly considered.
Asunto(s)
Grasas de la Dieta , Ácidos Grasos Omega-3 , Anciano , Envejecimiento , Dieta , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Insaturados , Femenino , Humanos , Masculino , ObesidadRESUMEN
Colorectal cancer is recognized as the fourth leading cause of cancer-related deaths worldwide. Thus, there is ongoing search for potential new biomarkers allowing quicker and less invasive detection of the disease and prediction of the treatment outcome. Therefore, the aim of our study was to identify colorectal cancer specific miRNAs expressed in cancerous and healthy tissue from the same patient and to further correlate the presence of the same miRNAs in the circulation as potential biomarkers for diagnosis. In the current study we detected a set of 40 miRNAs differentially regulated in tumor tissue when comparing with healthy tissue. Additionally, we found 8 miRNAs differentially regulated in serum of colorectal cancer patients. Interestingly, there was no overlap in miRNAs regulated in tissue and serum, suggesting that serum regulated miRNAs may be not actively secreted from colorectal tumor cells. However, four of differentially expressed miRNAs, including miR-21, miR-17, miR-20a and miR-32 represent the miRNAs characteristic for different tumor types, including breast, colon, lung, pancreas, prostate and stomach cancer. This finding suggests important groups of miRNAs which can be further validated as markers for diagnosis of tumor tissue and regulation of carcinogenesis.
Asunto(s)
Biomarcadores de Tumor , MicroARN Circulante , Neoplasias Colorrectales/genética , MicroARNs/genética , Adulto , Anciano , Estudios de Casos y Controles , Neoplasias Colorrectales/sangre , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , MicroARNs/sangre , Persona de Mediana EdadRESUMEN
Adipose tissue represents complex endocrine organ containing several different cellular populations including adipocytes, pre-adipocytes, mesenchymal stem cells, macrophages and lymphocytes. It is well establishing that these populations are not static but alter during obesity and aging. Changes in cellular populations alter inflammatory status and other common metabolic complications arise, therefore adipose tissue cellular composition helps dictate its endocrine and regulatory function. During excessive weight gain in obese individuals and as we age there is shift towards increase populations of inflammatory macrophages with a decrease of regulatory T cell. This altered cellular composition promote chronic low grade inflammation negatively affecting mesenchymal stem cell progenitor self-renewal, which result in deterioration of adipogenesis and increased cellular stress in adipocytes. All these changes promote metabolic disorders including age- or obese-related insulin resistance leading to type 2 diabetes.