Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Matrix Biol Plus ; 6-7: 100028, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33543025

RESUMEN

Classical osteogenesis imperfecta (OI) is an inherited rare brittle bone disease caused by dominant mutations in the COL1A1 or COL1A2 genes, encoding for the α chains of collagen type I. The definitive cure for the disease will require a gene therapy approach, aimed to correct or suppress the mutant allele. Interestingly, individuals lacking α2(I) chain and synthetizing collagen α1(I)3 homotrimers do not show bone phenotype, making appealing a bone specific COL1A2 silencing approach for OI therapy. To this aim, three different Col1a2-silencing RNAs (siRNAs), -3554, -3825 and -4125, selected at the 3'-end of the murine Col1a2 transcript were tested in vitro and in vivo. In murine embryonic fibroblasts Col1a2-siRNA-3554 was able to efficiently and specifically target the Col1a2 mRNA and to strongly reduce α2(I) chain expression. Its efficiency and specificity were also demonstrated in primary murine osteoblasts, whose mineralization was preserved. The efficiency of Col1a2-siRNA-3554 was proved also in vivo. Biphasic calcium phosphate implants loaded with murine mesenchymal stem cells were intramuscularly transplanted in nude mice and injected with Col1a2-siRNA-3554 three times a week for three weeks. Collagen α2 silencing was demonstrated both at mRNA and protein level and Masson's Trichrome staining confirmed the presence of newly formed collagen matrix. Our data pave the way for further investigation of Col1a2 silencing and siRNA delivery to the bone tissue as a possible strategy for OI therapy.

2.
J Comp Neurol ; 528(1): 61-80, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31246278

RESUMEN

The extracellular matrix is essential for brain development, lamination, and synaptogenesis. In particular, the basement membrane below the pial meninx (pBM) is required for correct cortical development. The last step in the catabolism of the most abundant protein in pBM, collagen Type IV, requires prolidase, an exopeptidase cleaving the imidodipeptides containing pro or hyp at the C-terminal end. Mutations impairing prolidase activity lead in humans to the rare disease prolidase deficiency characterized by severe skin ulcers and mental impairment. Thus, the dark-like (dal) mouse, in which the prolidase is knocked-out, was used to investigate whether the deficiency of prolidase affects the neuronal maturation during development of a brain cortex area. Focusing on the cerebellar cortex, thinner collagen fibers and disorganized pBM were found. Aberrant cortical granule cell proliferation and migration occurred, associated to defects in brain lamination, and in particular in maturation of Purkinje neurons and formation of synaptic contacts. This study deeply elucidates a link between prolidase activity and neuronal maturation shedding new light on the molecular basis of functional aspects in the prolidase deficiency.


Asunto(s)
Corteza Cerebelosa/enzimología , Corteza Cerebelosa/crecimiento & desarrollo , Dipeptidasas/metabolismo , Matriz Extracelular/enzimología , Animales , Animales Recién Nacidos , Corteza Cerebelosa/química , Dipeptidasas/análisis , Matriz Extracelular/química , Técnica del Anticuerpo Fluorescente/métodos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos CBA , Ratones Transgénicos
3.
Calcif Tissue Int ; 103(6): 653-662, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30076439

RESUMEN

Osteogenesis imperfecta (OI) is a rare heritable skeletal dysplasia mainly caused by type I collagen abnormalities and characterized by bone fragility and susceptibility to fracture. Over 85% of the patients carry dominant mutations in the genes encoding for the collagen type I α1 and α2 chains. Failure of bone union and/or presence of hyperplastic callus formation after fracture were described in OI patients. Here we used the Col1a2+/G610C mouse, carrying in heterozygosis the α2(I)-G610C substitution, to investigate the healing process of an OI bone. Tibiae of 2-month-old Col1a2+/G610C and wild-type littermates were fractured and the healing process was followed at 2, 3, and 5 weeks after injury from fibrous cartilaginous tissue formation to its bone replacement by radiography, micro-computed tomography (µCT), histological and biochemical approaches. In presence of similar fracture types, in Col1a2+/G610C mice an impairment in the early phase of bone repair was detected compared to wild-type littermates. Smaller callus area, callus bone surface, and bone volume associated to higher percentage of cartilage and lower percentage of bone were evident in Col1a2+/G610C at 2 weeks post fracture (wpf) and no change by 3 wpf. Furthermore, the biochemical analysis of collagen extracted from callus 2 wpf revealed in mutants an increased amount of type II collagen, typical of cartilage, with respect to type I, characteristic of bone. This is the first report of a delay in OI bone fracture repair at the modeling phase.


Asunto(s)
Colágeno Tipo I/genética , Curación de Fractura/genética , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Animales , Modelos Animales de Enfermedad , Ratones , Mutación
4.
Eur J Hum Genet ; 25(5): 646-650, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28198391

RESUMEN

Meier-Gorlin syndrome (MGORS) is a rare disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recessive mutations in ORC1, ORC4, ORC6, CDT1, CDC6, and CDC45, encoding members of the pre-replication (pre-RC) and pre-initiation (pre-IC) complexes, and heterozygous mutations in GMNN, a regulator of cell-cycle progression and DNA replication, have already been associated with this condition. We performed whole-exome sequencing (WES) in a patient with a clinical diagnosis of MGORS and identified biallelic variants in MCM5. This gene encodes a subunit of the replicative helicase complex, which represents a component of the pre-RC. Both variants, a missense substitution within a conserved domain critical for the helicase activity, and a single base deletion causing a frameshift and a premature stop codon, were predicted to be detrimental for the MCM5 function. Although variants of MCM5 have never been reported in specific human diseases, defect of this gene in zebrafish causes a phenotype of growth restriction overlapping the one associated with orc1 depletion. Complementation experiments in yeast showed that the plasmid carrying the missense variant was unable to rescue the lethal phenotype caused by mcm5 deletion. Moreover cell-cycle progression was delayed in patient's cells, as already shown for mutations in the ORC1 gene. Altogether our findings support the role of MCM5 as a novel gene involved in MGORS, further emphasizing that this condition is caused by impaired DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/genética , Microtia Congénita/genética , Trastornos del Crecimiento/genética , Micrognatismo/genética , Rótula/anomalías , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Niño , Codón sin Sentido , Microtia Congénita/diagnóstico , Replicación del ADN , Exoma , Prueba de Complementación Genética , Trastornos del Crecimiento/diagnóstico , Humanos , Mutación INDEL , Masculino , Micrognatismo/diagnóstico , Mutación Missense , Saccharomyces cerevisiae/genética
5.
Hum Mol Genet ; 24(21): 6118-33, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26264579

RESUMEN

Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl(+/-) to investigate the molecular basis of OI phenotypic variability. Brtl(+/-) resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl(+/-) mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl(+/-) lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-ß signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment.


Asunto(s)
Citoesqueleto/metabolismo , Osteogénesis Imperfecta/patología , Proteínas 14-3-3/metabolismo , Animales , Huesos/metabolismo , Huesos/patología , Cofilina 1/metabolismo , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Genes Letales , Humanos , Integrinas/metabolismo , Ratones , Ratones Mutantes , Mutación , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Fenotipo , Transducción de Señal , Piel/metabolismo , Tomografía Computarizada por Rayos X , Vimentina/metabolismo
6.
Bone ; 72: 53-64, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25460580

RESUMEN

The degradation of the main fibrillar collagens, collagens I and II, is a crucial process for skeletal development. The most abundant dipeptides generated from the catabolism of collagens contain proline and hydroxyproline. In humans, prolidase is the only enzyme able to hydrolyze dipeptides containing these amino acids at their C-terminal end, thus being a key player in collagen synthesis and turnover. Mutations in the prolidase gene cause prolidase deficiency (PD), a rare recessive disorder. Here we describe 12 PD patients, 9 of whom were molecularly characterized in this study. Following a retrospective analysis of all of them a skeletal phenotype associated with short stature, hypertelorism, nose abnormalities, microcephaly, osteopenia and genu valgum, independent of both the type of mutation and the presence of the mutant protein was identified. In order to understand the molecular basis of the bone phenotype associated with PD, we analyzed a recently identified mouse model for the disease, the dark-like (dal) mutant. The dal/dal mice showed a short snout, they were smaller than controls, their femurs were significantly shorter and pQCT and µCT analyses of long bones revealed compromised bone properties at the cortical and at the trabecular level in both male and female animals. The differences were more pronounce at 1 month being the most parameters normalized by 2 months of age. A delay in the formation of the second ossification center was evident at postnatal day 10. Our work reveals that reduced bone growth was due to impaired chondrocyte proliferation and increased apoptosis rate in the proliferative zone associated with reduced hyperthrophic zone height. These data suggest that lack of prolidase, a cytosolic enzyme involved in the final stage of protein catabolism, is required for normal skeletogenesis especially at early age when the requirement for collagen synthesis and degradation is the highest.


Asunto(s)
Huesos/patología , Dipeptidasas/metabolismo , Deficiencia de Prolidasa/metabolismo , Adolescente , Adulto , Animales , Secuencia de Bases , Tamaño Corporal , Niño , Preescolar , Citosol/enzimología , Femenino , Fémur/patología , Fibroblastos/enzimología , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos CBA , Ratones Transgénicos , Datos de Secuencia Molecular , Osteoblastos/enzimología , Fenotipo , Estructura Terciaria de Proteína , Estudios Retrospectivos , Tibia/patología , Tomografía Computarizada por Rayos X , Microtomografía por Rayos X , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA