Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(31)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34321203

RESUMEN

The hydrological cycle intensifies under global warming with precipitation increases. How the increased precipitation varies temporally at a given location has vital implications for regional climates and ecosystem services. On the basis of ensemble climate model projections under a high-emission scenario, here, we show that approximately two-thirds of land on Earth will face a "wetter and more variable" hydroclimate on daily to multiyear time scales. This means wider swings between wet and dry extremes. Such an amplification of precipitation variability is particularly prominent over climatologically wet regions, with percentage increases in variability more than twice those in mean precipitation. Thermodynamic effects, linked to increased moisture availability, increase precipitation variability uniformly everywhere. It is the dynamic effects (negative) linked to weakened circulation variability that make precipitation variability changes strongly region dependent. The increase in precipitation variability poses an additional challenge to the climate resilience of infrastructures and human society.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...