Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 33(9): e17342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38584356

RESUMEN

Endosymbiotic dinoflagellates (Symbiodiniaceae) influence coral thermal tolerance at both local and regional scales. In isolation, the effects of host genetics, environment, and thermal disturbances on symbiont communities are well understood, yet their combined effects remain poorly resolved. Here, we investigate Symbiodiniaceae across 1300 km in Australia's Coral Sea Marine Park to disentangle these interactive effects. We identified Symbiodiniaceae to species-level resolution for three coral species (Acropora cf humilis, Pocillopora verrucosa, and Pocillopora meandrina) by sequencing two genetic markers of the symbiont (ITS2 and psbAncr), paired with genotype-by-sequencing of the coral host (DArT-seq). Our samples predominantly returned sequences from the genus Cladocopium, where Acropora cf humilis affiliated with C3k, Pocillopora verrucosa with C. pacificum, and Pocillopora meandrina with C. latusorum. Multivariate analyses revealed that Acropora symbionts were driven strongly by local environment and thermal disturbances. In contrast, Pocillopora symbiont communities were both partitioned 2.5-fold more by host genetic structure than by environmental structure. Among the two Pocillopora species, the effects of environment and host genetics explained four times more variation in symbionts for P. meandrina than P. verrucosa. The concurrent bleaching event in 2020 had variable impacts on symbiont communities, consistent with patterns in P. verrucosa and A. cf humilis, but not P. meandrina. Our findings demonstrate how symbiont macroscale community structure responses to environmental gradients depend on host species and their respective population structure. Integrating host, symbiont, and environmental data will help forecast the adaptive potential of corals and their symbionts amidst a rapidly changing environment.


Asunto(s)
Antozoos , Arrecifes de Coral , Dinoflagelados , Simbiosis , Dinoflagelados/genética , Simbiosis/genética , Animales , Antozoos/microbiología , Antozoos/genética , Australia , Temperatura , Filogenia
2.
Glob Chang Biol ; 29(2): 404-416, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36285622

RESUMEN

Scleractinian coral populations are increasingly exposed to conditions above their upper thermal limits due to marine heatwaves, contributing to global declines of coral reef ecosystem health. However, historic mass bleaching events indicate there is considerable inter- and intra-specific variation in thermal tolerance whereby species, individual coral colonies and populations show differential susceptibility to exposure to elevated temperatures. Despite this, we lack a clear understanding of how heat tolerance varies across large contemporary and historical environmental gradients, or the selective pressures that underpin this variation. Here we conducted standardised acute heat stress experiments to identify variation in heat tolerance among species and isolated reefs spanning a large environmental gradient across the Coral Sea Marine Park. We quantified the photochemical yield (Fv /Fm ) of coral samples in three coral species, Acropora cf humilis, Pocillopora meandrina, and Pocillopora verrucosa, following exposure to four temperature treatments (local ambient temperatures, and + 3°C, +6°C and + 9°C above local maximum monthly mean). We quantified the temperature at which Fv /Fm decreased by 50% (termed ED50) and used derived values to directly compare acute heat tolerance across reefs and species. The ED50 for Acropora was 0.4-0.7°C lower than either Pocillopora species, with a 0.3°C difference between the two Pocillopora species. We also recorded 0.9°C to 1.9°C phenotypic variation in heat tolerance among reefs within species, indicating spatial heterogeneity in heat tolerance across broad environmental gradients. Acute heat tolerance had a strong positive relationship to mild heatwave exposure over the past 35 years (since 1986) but was negatively related to recent severe heatwaves (2016-2020). Phenotypic variation associated with mild thermal history in local environments provides supportive evidence that marine heatwaves are selecting for tolerant individuals and populations; however, this adaptive potential may be compromised by the exposure to recent severe heatwaves.


Asunto(s)
Antozoos , Termotolerancia , Animales , Ecosistema , Arrecifes de Coral , Respuesta al Choque Térmico
3.
Sci Rep ; 11(1): 21636, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737333

RESUMEN

Over 30 herbicides have been detected in catchments and waters of the Great Barrier Reef (GBR) and their toxicity to key tropical species, including the coral endosymbiotic algae Symbiodiniaceae, is not generally considered in current water quality guideline values (WQGVs). Mutualistic symbionts of the family Symbiodiniaceae are essential for the survival of scleractinian corals. We tested the effects of nine GBR-relevant herbicides on photosynthetic efficiency (ΔF/Fm') and specific growth rate (SGR) over 14 days of cultured coral endosymbiont Cladocopium goreaui (formerly Symbiodinium clade C1). All seven Photosystem II (PSII) herbicides tested inhibited ΔF/Fm' and SGR, with toxicity thresholds for SGR ranging between 2.75 and 320 µg L-1 (no effect concentration) and 2.54-257 µg L-1 (EC10). There was a strong correlation between EC50s for ΔF/Fm' and SGR for all PSII herbicides indicating that inhibition of ΔF/Fm' can be considered a biologically relevant toxicity endpoint for PSII herbicides to this species. The non-PSII herbicides haloxyfop and imazapic did not affect ΔF/Fm' or SGR at the highest concentrations tested. The inclusion of this toxicity data for Symbiodiniaceae will contribute to improving WQGVs to adequately inform risk assessments and the management of herbicides in tropical marine ecosystems.


Asunto(s)
Antozoos/efectos de los fármacos , Antozoos/metabolismo , Herbicidas/efectos adversos , Animales , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Ecosistema , Herbicidas/farmacología , Herbicidas/toxicidad , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Simbiosis/fisiología , Contaminantes Químicos del Agua/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...