Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Korean J Orthod ; 53(1): 16-25, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696956

RESUMEN

Objective: We aimed to evaluate the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles (nano-Ag and nano-ZnO, respectively). Methods: In this experimental study, 30 orthodontic bands were divided into three groups (n = 10 each): control (uncoated band), Ag (silver-coated band), and ZnO (zinc oxide-coated band). The electrostatic spray-assisted vapor deposition method was used to coat orthodontic bands with nano-Ag or nano-ZnO. The biofilm inhibition test was used to assess the antimicrobial effectiveness of nano-Ag and nano-ZnO against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Biocompatibility tests were conducted using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The groups were compared using oneway analysis of variance with a post-hoc test. Results: The Ag group showed a significantly higher reduction in the number of L. acidophilus, C. albicans, and S. mutans colonies than the ZnO group (p = 0.015, 0.003, and 0.005, respectively). Compared with the control group, the Ag group showed a 2-log10 reduction in all the microorganisms' replication ability, but only S. mutants showed a 2-log10 reduction in replication ability in the ZnO group. The lowest mean cell viability was observed in the Ag group, but the difference between the groups was insignificant (p > 0.05). Conclusions: Coating orthodontic bands with nano-ZnO or nano-Ag induced antimicrobial effects against oral pathogens. Among the nanoparticles, nano-Ag showed the best antimicrobial activity and nano-ZnO showed the highest biocompatibility.

2.
Restor Dent Endod ; 46(1): e1, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33680890

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the dystrophic mineralization deposits from 3 calcium silicate-based cements (Micro-Mega mineral trioxide aggregate [MM-MTA], Biodentine [BD], and EndoSequence Root Repair Material [ESRRM] putty) over time after subcutaneous implantation into rats. MATERIALS AND METHODS: Forty-five silicon tubes containing the tested materials and 15 empty tubes (serving as a control group) were subcutaneously implanted into the backs of 15 Wistar rats. At 1, 4, and 8 weeks after implantation, the animals were euthanized (n = 5 animals/group), and the silicon tubes were removed with the surrounding tissues. Histopathological tissue sections were stained with von Kossa stain to assess mineralization. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDX) were also used to assess the chemical components of the surface precipitates deposited on the implant and the pattern of calcium and phosphorus distribution at the material-tissue interface. The calcium-to-phosphorus ratios were compared using the non-parametric Kruskal-Wallis test at a significance level of 5%. RESULTS: The von Kossa staining showed that both BD and ESRRM putty induced mineralization starting at week 1; this mineralization increased further until the end of the study. In contrast, MM-MTA induced dystrophic calcification later, from 4 weeks onward. SEM/EDX showed no statistically significant differences in the calcium- and phosphorus-rich areas among the 3 materials at any time point (p > 0.05). CONCLUSIONS: After subcutaneous implantation, biomineralization of the 3-calcium silicate-based cements started early and increased over time, and all 3 tested cements generated calcium- and phosphorus-containing surface precipitates.

3.
Biomed Res Int ; 2020: 9576930, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32596400

RESUMEN

OBJECTIVE: This study evaluated the bioactivity and physicochemical properties of three commercial calcium silicate-based endodontic materials (MTA, EndoSequence Root Repair Material putty, and Biodentine™). Material and Methods. Horizontal sections of 3 mm thickness from 18 root canals of human teeth were subjected to biomechanical preparation with WaveOne Gold large rotary instruments. The twelve specimens were filled with three tested materials (MM-MTA, EndoSequence Root Repair Material putty, and Biodentine™) and immersed in phosphate-buffered saline for 7 and 30 days. After this period of time, each specimen of each material was processed for morphological observation, surface precipitates, and interfacial dentin using SEM. In addition, the surface morphology of the set materials, without soaking in phosphate-buffered solution after one day and after 28 days stored in phosphate-buffered saline, was evaluated using SEM; also, the pH of the soaking water and the amount of calcium ions released from the test materials were measured by using an inductively coupled plasma-optical emission spectroscopy test. Data obtained were analyzed using one-way analysis of variance and Tukey's honest significant difference test with a significance level of 5%. RESULT: The formation of precipitates was observed on the surfaces of all materials at 1 week and increased substantially over time. Interfacial layers in some areas of the dentin-cement interface were found from one week of immersion. All the analyzed materials showed alkaline pH and capacity to release calcium ions; however, the concentrations of released calcium ions were significantly more in Biodentine and ESRRM putty than MM-MTA (P < 0.05). ESRRM putty maintained a pH of around 11 after 28 days. CONCLUSION: Compared with MM-MTA, Biodentine and ESRRM putty showed significantly more calcium ion release. However, exposure of three tested cements to phosphate-buffered solution resulted in precipitation of apatite crystalline structures over both cement and dentin that increased over time. This suggests that the tested materials are bioactive.


Asunto(s)
Compuestos de Calcio/química , Fosfatos de Calcio/química , Cementos Dentales/química , Óxidos/química , Silicatos/química , Calcio/química , Combinación de Medicamentos , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Propiedades de Superficie , Agua/química
4.
Bioinorg Chem Appl ; 2020: 9582165, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351551

RESUMEN

OBJECTIVE: The aim of this study was to histologically examine the tissue reaction of three different calcium silicate cements in the closure of perforations in rat incisor teeth. Material and Methods. An experimental lateral root perforation with pulp exposure was performed in 32 lower incisors of 16 male Wistar albino rats. They were randomly assigned into three test groups (each including eight teeth) that were filled either by Biodentine (BD) or MicroMega mineral trioxide aggregate (MM-MTA) or EndoSequence root repair material putty (ESRRM putty), besides eight unperforated incisors from the other four rats (control group). The inflammatory response and healing process were evaluated histologically and scored after one and four weeks. Differences among groups were tested by Kruskal-Wallis tests at P ≤ 0.05. RESULTS: In the first week, BD produced more inflammatory response in the pulpal (score 3) than other materials (score 2). Only ESRRM putty showed odontoblast-like cells in 50%, 25% dentine-like deposit, 25% evidence of bone deposition in the drilling site (score 2), and minimum periodontal ligament (PDL) necrosis and disorganization (25%, score 2). After one month, all groups had healthy pulpal tissue, but 25% of ESRRM putty retained score 1 inflammatory response, and 50% of the BD case had an incomplete palisading odontoblast layer (score 3). A thick and regular dentine bridge deposition was seen in the ESRRM putty group in comparison with MM-MTA and BD cases. The cortical plate healing in all ESRRM putty samples was complete (score 3), while an incomplete closure was seen in MM-MTA and BD groups (score 2). Both the MM-MTA and ESRRM putty groups had fully organized PDL (score 2), while in 50% of BD cases, a necrotizing area and disorganized PDL with inflammatory cells infiltration were still present. Statistically significant differences in the scores of any histologic parameters among the three tested materials were observed neither in the 1st nor in the 4th weeks of the experimental period. CONCLUSION: Better tissue compatibility and repair of pulpal and periodontal tissue have been detected after lateral perforation in the root of rat incisors when treated with ESRRM putty than MM-MTA and BD. However, the difference was not significant.

5.
Tissue Eng Part B Rev ; 25(5): 387-397, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144596

RESUMEN

Hope is that tissue engineering will provide a solution to meet the growing needs for bone substitutes. Among the potential solutions, three-dimensional (3D) printing is a promising method to fabricate functional bone substitutes especially for treatment of complex and critical-sized bone defects. Despite its encouraging achievements, 3D printing of bone substitutes still faces serious challenges including mechanical strength, shape complexity, optimization of pore parameters, and vascularization. The newer approach, that is, 3D bioprinting, is also confronted with challenges, which have prevented the realization of the dream of fabricating functional patient-specific bone substitutes. This article reviews the major challenges toward 3D printing and bioprinting of bone substitutes and recent studies addressing them. Potential solutions for each challenge and future directions are also provided. Impact Statement This review provides a current overview of the challenges in 3D (bio)printing of bone substitutes and summarizes the potential solutions.


Asunto(s)
Materiales Biocompatibles/química , Bioimpresión/métodos , Sustitutos de Huesos/química , Impresión Tridimensional/instrumentación , Ingeniería de Tejidos/métodos , Animales , Humanos , Ingeniería de Tejidos/instrumentación
6.
Ther Innov Regul Sci ; 53(1): 120-127, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29756484

RESUMEN

Regarding the widespread and ever-increasing applications of biomaterials in different medical fields, their accurate assessment is of great importance. Hence the safety and efficacy of biomaterials is confirmed only through the evaluation process, the way it is done has direct effects on public health. Although every biomaterial undergoes rigorous premarket evaluation, the regulatory agencies receive a considerable number of complications and adverse event reports annually. The main factors that challenge the process of biomaterials evaluation are dissimilar regulations, asynchrony of biomaterials evaluation and biomaterials development, inherent biases of postmarketing data, and cost and timing issues. Several pieces of evidence indicate that current medical device regulations need to be improved so that they can be used more effectively in the evaluation of biomaterials. This article provides suggested conceptual refinements and practical reforms to increase the efficiency and effectiveness of the existing regulations. The main focus of the article is on strategies for evaluating biomaterials in US, and then in EU.


Asunto(s)
Materiales Biocompatibles , Seguridad de Equipos , Materiales Biocompatibles/clasificación , Bases de Datos Factuales , Unión Europea , Legislación de Dispositivos Médicos , Vigilancia de Productos Comercializados , Estados Unidos
7.
J Adv Prosthodont ; 10(2): 113-121, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29713431

RESUMEN

PURPOSE: The aim of this preliminary study was to investigate, for the first time, the effects of addition of titania nanotubes (n-TiO2) to poly methyl methacrylate (PMMA) on mechanical properties of PMMA denture base. MATERIALS AND METHODS: TiO2 nanotubes were prepared using alkaline hydrothermal process. Obtained nanotubes were assessed using FESEM-EDX, XRD, and FT-IR. For 3 experiments of this study (fracture toughness, three-point bending flexural strength, and Vickers microhardness), 135 specimens were prepared according to ISO 20795-1:2013 (n of each experiment=45). For each experiment, PMMA was mixed with 0% (control), 2.5 wt%, and 5 wt% nanotubes. From each TiO2:PMMA ratio, 15 specimens were fabricated for each experiment. Effects of n-TiO2 addition on 3 mechanical properties were assessed using Pearson, ANOVA, and Tukey tests. RESULTS: SEM images of n-TiO2 exhibited the presence of elongated tubular structures. The XRD pattern of synthesized n-TiO2 represented the anatase crystal phase of TiO2. Moderate to very strong significant positive correlations were observed between the concentration of n-TiO2 and each of the 3 physicomechanical properties of PMMA (Pearson's P value ≤.001, correlation coefficient ranging between 0.5 and 0.9). Flexural strength and hardness values of specimens modified with both 2.5 and 5 wt% n-TiO2 were significantly higher than those of control (P≤.001). Fracture toughness of samples reinforced with 5 wt% n-TiO2 (but not those of 2.5% n-TiO2) was higher than control (P=.002). CONCLUSION: Titania nanotubes were successfully introduced for the first time as a means of enhancing the hardness, flexural strength, and fracture toughness of denture base PMMA.

8.
J Prosthodont ; 27(8): 733-736, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29322600

RESUMEN

PURPOSE: Furcations are complicated periodontal defects. Untreated furcations lead to loss of the involved teeth and supporting tissues. It has been demonstrated that regenerative biomaterials are beneficial in reconstruction of the bone surrounding furcation-affected teeth. These biomaterials range from bone grafts and nonresorbable/resorbable barrier membranes to biologics that are able to trigger inactive regenerative processes in periodontal tissues. Selection of appropriate material(s) to treat furcations is challenging. The aim of this article is to provide a comparative outlook on different biomaterials applicable in regeneration of furcations with a focus on enamel matrix derivative (EMD). METHODS: Scientific databases including PubMed/MEDLINE, ScienceDirect, and EMBASE were searched, and 28 articles were found primarily for this specific study. Full texts were studied to identify relevant studies; 17 studies were excluded because of irrelevancy, while 11 main studies were ultimately selected. Other references have been used for general statements. RESULTS: EMD is a protein complex widely used in the regeneration of different periodontal defects. To assess the effects of EMD for treatment of root furcations, clinical studies involving EMD with and without barrier membranes and bone grafts were selected and compared. Briefly, this study reveals that when EMD is combined with open flap debridement (OFD), guided tissue regeneration (GTR), or bone grafting (BG), the amount of class II furcations converted to class I increases significantly. EMD also reduces tissue swelling and patient discomfort after treatment. CONCLUSIONS: This study provides evidence to find the best combination of biomaterials to treat furcation defects. The best results are obtained if EMD is combined with ß-TCP/HA alloplastic bone grafts.


Asunto(s)
Esmalte Dental/metabolismo , Defectos de Furcación/terapia , Regeneración Tisular Guiada Periodontal/métodos , Trasplante Óseo , Humanos , Resultado del Tratamiento
9.
Iran J Pharm Res ; 17(Suppl2): 161-172, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31011350

RESUMEN

The purpose of this study was to investigate the antimicrobial properties of a conventional poly methyl methacrylate (PMMA) modified with hydrothermally synthesised titanium dioxide nanotubes (TNTs). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentrations (MFC) for planktonic cells of the TiO2 nanotubes solution against Lactobacillus acidophilus, Streptococcus mutans and Candida albicans were determined. The powder of conventional acrylic resin was modified using 2.5% and 5% by weight synthesised titanium dioxide (TiO2) nanotubes, and rectangular-shaped specimens (10 mm × 10 mm × 3 mm) were fabricated. The antimicrobial properties of ultraviolet (UV) and non-UV irradiated modified, and non-modified acrylic resins were evaluated using the estimation of planktonic cell count and biofilm formation of the three microorganisms mentioned above. The data were analysed by one-way analysis of variance (ANOVA), followed by a post-hoc Tukey's test at a significance level of 5%. MIC, for Streptococcus. mutans, Lactobacillus. acidophilus, and Candida. albicans, MBC for S. mutans and L. acidophilus and MFC for Candida. albicans were obtained more than 2100 µg/mL. The results of this study indicated a significant reduction in both planktonic cell count and biofilm formation of modified UV-activated acrylic specimens compared with the control group (p = 0.00). According to the results of the current study, it can be concluded that PMMA/TiO2 nanotube composite can be considered as a promising new material for antimicrobial approaches.

10.
Mater Sci Eng C Mater Biol Appl ; 69: 171-83, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27612702

RESUMEN

AIMS: The purpose of this multi-phase explorative in vivo animal/surgical and in vitro multi-test experimental study was to (1) create a 3wt%-nanostrontium hydroxyapatite-enhanced calcium phosphate cement (Sr-HA/CPC) for increasing bone formation and (2) creating a simvastatin-loaded poly(lactic-co-glycolic acid) (SIM-loaded PLGA) microspheres plus CPC composite (SIM-loaded PLGA+nanostrontium-CPC). The third goal was the extensive assessment of multiple in vitro and in vivo characteristics of the above experimental explorative products in vitro and in vivo (animal and surgical studies). METHODS AND RESULTS PERTAINING TO SR-HA/CPC: Physical and chemical properties of the prepared Sr-HA/CPC were evaluated. MTT assay and alkaline phosphatase activities, and radiological and histological examinations of Sr-HA/CPC, CPC and negative control were compared. X-ray diffraction (XRD) indicated that crystallinity of the prepared cement increased by increasing the powder-to-liquid ratio. Incorporation of Sr-HA into CPC increased MTT assay (biocompatibility) and ALP activity (P<0.05). Histomorphometry showed greater bone formation after 4weeks, after implantation of Sr-HA/CPC in 10 rats compared to implantations of CPC or empty defects in the same rats (n=30, ANOVA P<0.05). METHODS AND RESULTS PERTAINING TO SIM-LOADED PLGA MICROSPHERES+NANOSTRONTIUM-CPC COMPOSITE: After SEM assessment, the produced composite of microspheres and enhanced CPC were implanted for 8weeks in 10 rabbits, along with positive and negative controls, enhanced CPC, and enhanced CPC plus SIM (n=50). In the control group, only a small amount of bone had been regenerated (localized at the boundary of the defect); whereas, other groups showed new bone formation within and around the materials. A significant difference was found in the osteogenesis induced by the groups sham control (16.96±1.01), bone materials (32.28±4.03), nanostrontium-CPC (24.84±2.6), nanostrontium-CPC-simvastatin (40.12±3.29), and SIM-loaded PLGA+nanostrontium-CPC (44.8±6.45) (ANOVA P<0.001). All the pairwise comparisons were significant (Tukey P<0.01), except that of nanostrontium-CPC-simvastatin and SIM-loaded PLGA+nanostrontium-CPC. This confirmed the efficacy of the SIM-loaded PLGA+nanostrontium-CPC composite, and its superiority over all materials except SIM-containing nanostrontium-CPC.


Asunto(s)
Materiales Biocompatibles/química , Fosfatos de Calcio/química , Portadores de Fármacos/química , Hidroxiapatitas/química , Ácido Láctico/química , Nanocompuestos/química , Ácido Poliglicólico/química , Simvastatina/química , Animales , Materiales Biocompatibles/farmacología , Enfermedades Óseas/tratamiento farmacológico , Enfermedades Óseas/patología , Huesos/efectos de los fármacos , Huesos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/toxicidad , Humanos , Masculino , Microesferas , Osteogénesis/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Conejos , Ratas , Ratas Sprague-Dawley , Simvastatina/administración & dosificación , Estroncio/química
11.
Iran J Pharm Res ; 15(Suppl): 205-211, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28228818

RESUMEN

Microspheres formulated from poly (D, L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method. The microspheres were then frozen to -80 °C, they were freeze dried for 24 h. Characterization of SIM-loaded PLGA microspheres was evaluated by X-ray diffraction analysis, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy (SEM). Drug release potential was evaluated by UV-spectrophotometry. The experimental results revealed that SIM-loaded PLGA microspheres can be successfully obtained through solvent evaporation method with appropriate morphologic characteristics and high encapsulation efficiency. The drug release pattern from polymeric microspheres in the phosphate buffered saline medium was measured during a 21-day period using UV-spectrophotometry. The correlation coefficient value (r2= 0.9878) of the trend lines of the graph showed that the SIM-loaded PLGA microspheres best fit with zero order release pattern. No burst release was observed with polymeric matrix. The drug release characteristic of the microspheres ascertained that the release was about 27% for SIM-loaded microspheres, which occurred within the first 6 days after maintaining the microspheres in phosphate buffer saline. Also, the microspheres successfully presented a slow release and the duration of the release lasted for more than 21 days. It can be concluded that SIM-loaded PLGA microspheres hold great promise for using as a drug-delivery system in biomedical applications, especially in drug delivery systems and tissue engineering.

12.
Artículo en Inglés | MEDLINE | ID: mdl-26889359

RESUMEN

Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-µm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

13.
Clin Implant Dent Relat Res ; 12(3): 175-80, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19438964

RESUMEN

BACKGROUND: Although the effect of bisphosphonates on dental implant osseointegration is not clear, dental implant failures attributable to oral bisphosphonate therapy have been reported in patients with osteoporosis. PURPOSE: The aim of this study was to evaluate implant survival in patients with a history of bisphosphonate therapy in a retrospective survey. MATERIALS AND METHODS: A total of 46 ITI implants placed in 21 osteoporotic patients (females; average age 53 years, range 42-79 years) were evaluated with regard to probing depth, mobility, thread exposure, and bleeding on probing. All patients were under oral bisphosphonate therapy. RESULTS: None of implants showed mobility and all patients could be considered free from peri-implantitis. Time of bisphosphonate therapy before and after implant insertion showed no statistically significant influence on PD, BOP, and TE. Likewise, implant location, prosthetic type, and opposing dentition had no statistically significant influence on the clinical and radiological parameters of implants. CONCLUSION: Within the limitations of this study, it could be concluded that neither being on oral bisphosphonate treatment before implant placement nor starting bisphosphonate therapy after implant installation might jeopardize the successful osseointegration and clinical and radiographic condition of the implants.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Implantación Dental Endoósea/métodos , Difosfonatos/uso terapéutico , Oseointegración/efectos de los fármacos , Osteoporosis Posmenopáusica/tratamiento farmacológico , Adulto , Anciano , Implantes Dentales , Prótesis Dental de Soporte Implantado , Femenino , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...