Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
bioRxiv ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38712161

RESUMEN

N,N-dimethyltryptamine (DMT) is a serotonergic psychedelic that is being investigated clinically for the treatment of psychiatric disorders. Although the neurophysiological effects of DMT in humans are well-characterized, similar studies in animal models as well as data on the neurochemical effects of DMT are generally lacking, which are critical for mechanistic understanding. In the current study, we combined behavioral analysis, high-density (32-channel) electroencephalography, and ultra-high-performance liquid chromatography-tandem mass spectrometry to simultaneously quantify changes in behavior, cortical neural dynamics, and levels of 17 neurochemicals in medial prefrontal and somatosensory cortices before, during, and after intravenous administration of three different doses of DMT (0.75 mg/kg, 3.75 mg/kg, 7.5 mg/kg) in male and female adult rats. All three doses of DMT produced head twitch response with most twitches observed after the low dose. DMT caused dose-dependent increases in serotonin and dopamine levels in both cortical sites along with a reduction in EEG spectral power in theta (4-10 Hz) and low gamma (25-55 Hz), and increase in power in delta (1-4 Hz), medium gamma (65-115), and high gamma (125-155 Hz) bands. Functional connectivity decreased in the delta band and increased across the gamma bands. In addition, we provide the first measurements of endogenous DMT in these cortical sites at levels comparable to serotonin and dopamine, which together with a previous study in occipital cortex, suggests a physiological role for endogenous DMT. This study represents one of the most comprehensive characterizations of psychedelic drug action in rats and the first to be conducted with DMT.

2.
Neuron ; 112(10): 1553-1567, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579714

RESUMEN

In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.


Asunto(s)
Encéfalo , Estado de Conciencia , Neurobiología , Humanos , Estado de Conciencia/fisiología , Estado de Conciencia/efectos de los fármacos , Encéfalo/fisiología , Encéfalo/efectos de los fármacos , Animales , Anestesia , Sueño/fisiología , Sueño/efectos de los fármacos , Anestésicos/farmacología , Nivel de Alerta/fisiología , Nivel de Alerta/efectos de los fármacos
3.
Anesthesiology ; 140(6): 1221-1231, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38603803

RESUMEN

The near-death experience has been reported since antiquity and is often characterized by the perception of light, interactions with other entities, and life recall. Near-death experiences can occur in a variety of situations, but they have been studied systematically after in-hospital cardiac arrest, with an incidence of 10 to 20%. Long attributed to metaphysical or supernatural causes, there have been recent advances in understanding the neurophysiologic basis of this unique category of conscious experience. This article reviews the epidemiology and neurobiology of near-death experiences, with a focus on clinical and laboratory evidence for a surge of neurophysiologic gamma oscillations and cortical connectivity after cardiac and respiratory arrest.


Asunto(s)
Encéfalo , Estado de Conciencia , Muerte , Humanos , Estado de Conciencia/fisiología , Encéfalo/fisiología , Encéfalo/fisiopatología , Paro Cardíaco/fisiopatología , Muerte Encefálica/fisiopatología , Muerte Encefálica/diagnóstico
4.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659759

RESUMEN

Consciousness requires a dynamic balance of integration and segregation in functional brain networks. An optimal integration-segregation balance depends on two key aspects of functional connectivity: global efficiency (i.e., integration) and clustering (i.e., segregation). We developed a new fMRI-based measure, termed the integration-segregation difference (ISD), which captures both aspects. We used this metric to quantify changes in brain state from conscious wakefulness to loss of responsiveness induced by the anesthetic propofol. The observed changes in ISD suggest a profound shift to segregation in both whole brain and all brain subnetworks during anesthesia. Moreover, brain networks displayed similar sequences of disintegration and subsequent reintegration during, respectively, loss and return of responsiveness. Random forest machine learning models, trained with the integration and segregation of brain networks, identified the awake vs. unresponsive states and their transitions with accuracy up to 93%. We found that metastability (i.e., the dynamic recurrence of non-equilibrium transient states) is more effectively explained by integration, while complexity (i.e., diversity and intricacy of neural activity) is more closely linked with segregation. The analysis of a sleep dataset revealed similar findings. Our results demonstrate that the integration-segregation balance is a useful index that can differentiate among various conscious and unconscious states.

5.
bioRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405722

RESUMEN

Psilocybin produces an altered state of consciousness in humans and is associated with complex spatiotemporal changes in brain networks. Given the emphasis on rodent models for mechanistic studies, there is a need for characterization of the effect of psilocybin on brain-wide network dynamics. Previous rodent studies of psychedelics, using electroencephalogram, have primarily been done with sparse electrode arrays that offered limited spatial resolution precluding network level analysis, and have been restricted to lower gamma frequencies. Therefore, in the study, we used electroencephalographic recordings from 27 sites (electrodes) across rat cortex (n=6 male, 6 female) to characterize the effect of psilocybin (0.1 mg/kg, 1 mg/kg, and 10 mg/kg delivered over an hour) on network organization as inferred through changes in node degree (index of network density) and connection strength (weighted phase-lag index). The removal of aperiodic component from the electroencephalogram localized the primary oscillatory changes to theta (4-10 Hz), medium gamma (70-110 Hz), and high gamma (110-150 Hz) bands, which were used for the network analysis. Additionally, we determined the concurrent changes in theta-gamma phase-amplitude coupling. We report that psilocybin, in a dose-dependent manner, 1) disrupted theta-gamma coupling [p<0.05], 2) increased frontal high gamma connectivity [p<0.05] and posterior theta connectivity [p≤0.049], and 3) increased frontal high gamma [p<0.05] and posterior theta [p≤0.046] network density. The medium gamma frontoparietal connectivity showed a nonlinear relationship with psilocybin dose. Our results suggest that high-frequency network organization, decoupled from local theta-phase, may be an important signature of psilocybin-induced non-ordinary state of consciousness.

6.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328136

RESUMEN

Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. We observed a significant shift in this geometry during unconsciousness, marked by the dominance of unimodal over transmodal geometry. This alteration was closely linked to the spatial variations in the density of matrix cells within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core-matrix functional architecture in understanding the neural mechanisms of states of consciousness.

7.
Proc Natl Acad Sci U S A ; 121(3): e2312913120, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190526

RESUMEN

General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.


Asunto(s)
Anestésicos , Caracteres Sexuales , Humanos , Femenino , Masculino , Animales , Ratones , Anestésicos/farmacología , Anestesia General , Testosterona/farmacología , Inconsciencia
8.
Br J Anaesth ; 132(2): 224-226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092601

RESUMEN

Administration of subanaesthetic doses of ketamine during isoflurane anaesthesia has been shown in animals to deepen the anaesthetised state, while accelerating emergence. Duan and colleagues have now shown that the addition of subanaesthetic doses of esketamine to isoflurane has a similar effect of increasing the burst suppression ratio, while accelerating emergence. Using c-Fos expression and fibre photometry, they show that esketamine activates glutamatergic neurones in the paraventricular nucleus of the thalamus, a structure that regulates wakefulness. Chemogenetic inhibition of these neurones attenuates the arousal-promoting effects, suggesting a causal role of the paraventricular nucleus of the thalamus in esketamine-mediated acceleration of recovery from anaesthesia.


Asunto(s)
Anestesia , Anestésicos , Isoflurano , Ketamina , Animales , Ketamina/farmacología , Isoflurano/farmacología
9.
Br J Anaesth ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38071152

RESUMEN

BACKGROUND: Sleep disruption is a common occurrence during medical care and is detrimental to patient recovery. Long-term sedation in the critical care setting is a modifiable factor that affects sleep, but the impact of different sedative-hypnotics on sleep homeostasis is not clear. METHODS: We conducted a systematic comparison of the effects of prolonged sedation (8 h) with i.v. and inhalational agents on sleep homeostasis. Adult Sprague-Dawley rats (n=10) received dexmedetomidine or midazolam on separate days. Another group (n=9) received propofol or sevoflurane on separate days. A third group (n=12) received coadministration of dexmedetomidine and sevoflurane. Wakefulness (wake), slow-wave sleep (SWS), and rapid eye movement (REM) sleep were quantified during the 48-h post-sedation period, during which we also assessed wake-associated neural dynamics using two electroencephalographic measures: theta-high gamma phase-amplitude coupling and high gamma weighted phase-lag index. RESULTS: Dexmedetomidine-, midazolam-, or propofol-induced sedation increased wake and decreased SWS and REM sleep (P<0.0001) during the 48-h post-sedation period. Sevoflurane produced no change in SWS, decreased wake for 3 h, and increased REM sleep for 6 h (P<0.02) post-sedation. Coadministration of dexmedetomidine and sevoflurane induced no change in wake (P>0.05), increased SWS for 3 h, and decreased REM sleep for 9 h (P<0.02) post-sedation. Dexmedetomidine, midazolam, and coadministration of dexmedetomidine with sevoflurane reduced wake-associated phase-amplitude coupling (P≤0.01). All sedatives except sevoflurane decreased wake-associated high gamma weighted phase-lag index (P<0.01). CONCLUSIONS: In contrast to i.v. drugs, prolonged sevoflurane sedation produced minimal changes in sleep homeostasis and neural dynamics. Further studies are warranted to assess inhalational agents for long-term sedation and sleep homeostasis.

10.
Curr Biol ; 33(24): R1282-R1283, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38113836

RESUMEN

There is a renewed interest in psychedelic drugs as potential therapeutic agents for the treatment of psychiatric disorders. In particular, psilocybin has shown promise for the treatment of refractory depression1 and major depressive disorder2, and has also been explored as a treatment for tobacco and alcohol abuse3,4. However, despite suggestive evidence5,6, there has been no systematic study to investigate the effectiveness of psilocybin in attenuating indices of chronic pain. To address this gap, we investigated the effect of psilocybin on mechanical hypersensitivity and thermal hyperalgesia in a well-established rat model of formalin-induced, centralized chronic pain7,8 and demonstrate that a single intravenous bolus administration of psilocybin can attenuate mechanical hypersensitivity for 28 days.


Asunto(s)
Dolor Crónico , Trastorno Depresivo Mayor , Alucinógenos , Humanos , Animales , Ratas , Psilocibina/farmacología , Psilocibina/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Dolor Crónico/tratamiento farmacológico , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Formaldehído
11.
Commun Biol ; 6(1): 1284, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114805

RESUMEN

Despite the longstanding use of nitrous oxide and descriptions of its psychological effects more than a century ago, there is a paucity of neurobiological investigation of associated psychedelic experiences. We measure the brain's functional geometry (through analysis of cortical gradients) and temporal dynamics (through analysis of co-activation patterns) using human resting-state functional magnetic resonance imaging data acquired before and during administration of 35% nitrous oxide. Both analyses demonstrate that nitrous oxide reduces functional differentiation in frontoparietal and somatomotor networks. Importantly, the subjective psychedelic experience induced by nitrous oxide is inversely correlated with the degree of functional differentiation. Thus, like classical psychedelics acting on serotonin receptors, nitrous oxide flattens the functional geometry of the cortex and disrupts temporal dynamics in association with psychoactive effects.


Asunto(s)
Alucinógenos , Humanos , Alucinógenos/farmacología , Óxido Nitroso
12.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961554

RESUMEN

Classical psychedelic drugs are thought to increase excitability of pyramidal cells in prefrontal cortex via activation of serotonin 2A receptors (5-HT2ARs). Here, we instead find that multiple classes of psychedelics dose-dependently suppress intrinsic excitability of pyramidal neurons, and that extracellular delivery of psychedelics decreases excitability significantly more than intracellular delivery. A previously unknown mechanism underlies this psychedelic drug action: enhancement of ubiquitously expressed potassium "M-current" channels that is independent of 5-HT2R activation. Using machine-learning-based data assimilation models, we show that M-current activation interacts with previously described mechanisms to dramatically reduce intrinsic excitability and shorten working memory timespan. Thus, psychedelic drugs suppress intrinsic excitability by modulating ion channels that are expressed throughout the brain, potentially triggering homeostatic adjustments that can contribute to widespread therapeutic benefits.

13.
Pain ; 164(12): 2737-2748, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37751539

RESUMEN

ABSTRACT: Fibromyalgia has been characterized by augmented cross-network functional communication between the brain's sensorimotor, default mode, and attentional (salience/ventral and dorsal) networks. However, the underlying mechanisms of these aberrant communication patterns are unknown. In this study, we sought to understand large-scale topographic patterns at instantaneous timepoints, known as co-activation patterns (CAPs). We found that a sustained pressure pain challenge temporally modulated the occurrence of CAPs. Using proton magnetic resonance spectroscopy, we found that greater basal excitatory over inhibitory neurotransmitter levels within the anterior insula orchestrated higher cross-network connectivity between the anterior insula and the default mode network through lower occurrence of a CAP encompassing the attentional networks during sustained pain. Moreover, we found that hyperalgesia in fibromyalgia was mediated through increased occurrence of a CAP encompassing the sensorimotor network during sustained pain. In conclusion, this study elucidates the role of momentary large-scale topographic brain patterns in shaping noxious information in patients with fibromyalgia, while laying the groundwork for using precise spatiotemporal dynamics of the brain for the potential development of therapeutics.


Asunto(s)
Fibromialgia , Neuroquímica , Humanos , Fibromialgia/diagnóstico por imagen , Hiperalgesia/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Dolor , Mapeo Encefálico , Red Nerviosa/diagnóstico por imagen
14.
Anesthesiology ; 139(5): 568-579, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364282

RESUMEN

BACKGROUND: Perioperative neurocognitive disorders are a major public health issue, although there are no validated neurophysiologic biomarkers that predict cognitive function after surgery. This study tested the hypothesis that preoperative posterior electroencephalographic alpha power, alpha frontal-parietal connectivity, and cerebral oximetry would each correlate with postoperative neurocognitive function. METHODS: This was a single-center, prospective, observational study of adult (older than 18 yr) male and female noncardiac surgery patients. Whole-scalp, 16-channel electroencephalography and cerebral oximetry were recorded in the preoperative, intraoperative, and immediate postoperative settings. The primary outcome was the mean postoperative T-score of three National Institutes of Health Toolbox Cognition tests-Flanker Inhibitory Control and Attention, List Sorting Working Memory, and Pattern Comparison Processing Speed. These tests were obtained at preoperative baseline and on the first two postoperative mornings. The lowest average score from the first two postoperative days was used for the primary analysis. Delirium was a secondary outcome (via 3-min Confusion Assessment Method) measured in the postanesthesia care unit and twice daily for the first 3 postoperative days. Last, patient-reported outcomes related to cognition and overall well-being were collected 3 months postdischarge. RESULTS: Sixty-four participants were recruited with a median (interquartile range) age of 59 (48 to 66) yr. After adjustment for baseline cognitive function scores, no significant partial correlation (ρ) was detected between postoperative cognition scores and preoperative relative posterior alpha power (%; ρ = -0.03, P = 0.854), alpha frontal-parietal connectivity (via weight phase lag index; ρ = -0.10, P = 0.570, respectively), or preoperative cerebral oximetry (%; ρ = 0.21, P = 0.246). Only intraoperative frontal-parietal theta connectivity was associated with postoperative delirium (F[1,6,291] = 4.53, P = 0.034). No electroencephalographic or oximetry biomarkers were associated with cognitive or functional outcomes 3 months postdischarge. CONCLUSIONS: Preoperative posterior alpha power, frontal-parietal connectivity, and cerebral oximetry were not associated with cognitive function after noncardiac surgery.


Asunto(s)
Delirio , Oximetría , Adulto , Humanos , Masculino , Femenino , Estudios Prospectivos , Circulación Cerebrovascular , Cuidados Posteriores , Delirio/psicología , Alta del Paciente , Cognición , Electroencefalografía , Biomarcadores , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/psicología
15.
BMJ Open ; 13(5): e073945, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188468

RESUMEN

INTRODUCTION: Delirium is a major public health issue for surgical patients and their families because it is associated with increased mortality, cognitive and functional decline, prolonged hospital admission and increased healthcare expenditures. Based on preliminary data, this trial tests the hypothesis that intravenous caffeine, given postoperatively, will reduce the incidence of delirium in older adults after major non-cardiac surgery. METHODS AND ANALYSIS: The CAffeine, Postoperative Delirium And CHange In Outcomes after Surgery-2 (CAPACHINOS-2) Trial is a single-centre, placebo-controlled, randomised clinical trial that will be conducted at Michigan Medicine. The trial will be quadruple-blinded, with clinicians, researchers, participants and analysts all masked to the intervention. The goal is to enrol 250 patients with a 1:1:1: allocation ratio: dextrose 5% in water placebo, caffeine 1.5 mg/kg and caffeine 3 mg/kg as a caffeine citrate infusion. The study drug will be administered intravenously during surgical closure and on the first two postoperative mornings. The primary outcome will be delirium, assessed via long-form Confusion Assessment Method. Secondary outcomes will include delirium severity, delirium duration, patient-reported outcomes and opioid consumption patterns. A substudy analysis will also be conducted with high-density electroencephalography (72-channel system) to identify neural abnormalities associated with delirium and Mild Cognitive Impairment at preoperative baseline. ETHICS AND DISSEMINATION: This study was approved by the University of Michigan Medical School Institutional Review Board (HUM00218290). An independent data and safety monitoring board has also been empanelled and has approved the clinical trial protocol and related documents. Trial methodology and results will be disseminated via clinical and scientific journals along with social and news media. TRIAL REGISTRATION NUMBER: NCT05574400.


Asunto(s)
Disfunción Cognitiva , Delirio , Delirio del Despertar , Humanos , Anciano , Delirio/etiología , Delirio/prevención & control , Delirio/epidemiología , Cafeína/uso terapéutico , Disfunción Cognitiva/complicaciones , Michigan/epidemiología , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
Proc Natl Acad Sci U S A ; 120(19): e2216268120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126719

RESUMEN

The brain is assumed to be hypoactive during cardiac arrest. However, animal models of cardiac and respiratory arrest demonstrate a surge of gamma oscillations and functional connectivity. To investigate whether these preclinical findings translate to humans, we analyzed electroencephalogram and electrocardiogram signals in four comatose dying patients before and after the withdrawal of ventilatory support. Two of the four patients exhibited a rapid and marked surge of gamma power, surge of cross-frequency coupling of gamma waves with slower oscillations, and increased interhemispheric functional and directed connectivity in gamma bands. High-frequency oscillations paralleled the activation of beta/gamma cross-frequency coupling within the somatosensory cortices. Importantly, both patients displayed surges of functional and directed connectivity at multiple frequency bands within the posterior cortical "hot zone," a region postulated to be critical for conscious processing. This gamma activity was stimulated by global hypoxia and surged further as cardiac conditions deteriorated in the dying patients. These data demonstrate that the surge of gamma power and connectivity observed in animal models of cardiac arrest can be observed in select patients during the process of dying.


Asunto(s)
Encéfalo , Paro Cardíaco , Animales , Humanos , Rayos gamma , Encéfalo/fisiología , Electroencefalografía , Corazón
17.
18.
Neuroimage ; 273: 120097, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37031827

RESUMEN

The neurobiology of the psychedelic experience is not fully understood. Identifying common brain network changes induced by both classical (i.e., acting at the 5-HT2 receptor) and non-classical psychedelics would provide mechanistic insight into state-specific characteristics. We analyzed whole-brain functional connectivity based on resting-state fMRI data in humans, acquired before and during the administration of nitrous oxide, ketamine, and lysergic acid diethylamide. We report that, despite distinct molecular mechanisms and modes of delivery, all three psychedelics reduced within-network functional connectivity and enhanced between-network functional connectivity. More specifically, all three drugs increased connectivity between right temporoparietal junction and bilateral intraparietal sulcus as well as between precuneus and left intraparietal sulcus. These regions fall within the posterior cortical "hot zone," posited to mediate the qualitative aspects of experience. Thus, both classical and non-classical psychedelics modulate networks within an area of known relevance for consciousness, identifying a biologically plausible candidate for their subjective effects.


Asunto(s)
Alucinógenos , Ketamina , Humanos , Alucinógenos/farmacología , Dietilamida del Ácido Lisérgico/farmacología , Encéfalo , Ketamina/farmacología , Estado de Conciencia
19.
J Clin Transl Sci ; 7(1): e4, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755539

RESUMEN

Expanded access (EA) provides a pathway for the clinical use of investigational products (drugs, biologics, and medical devices) for patients who are without satisfactory therapeutic options and for whom a clinical trial is not available. Academic medical centers (AMCs) are likely to encounter EA requests, but it is unknown what support is available at these institutions for physicians seeking EA for patients. METHODS: A landscape assessment was conducted at AMCs, focused on those within the Clinical and Translational Science Awards (CTSA) consortium. RESULTS: Forty-seven responses were evaluated including 42 CTSA hubs. The large majority (43 of 47 respondents) reported using single-patient EA, while 37 reported multi-patient industry sponsored EA and 37 reported multi-patient investigator-initiated EA. Only half reported central tracking of EA requests. Support was available at 89% of sites for single-patient EA but less often for multi-patient EA. Types of support varied and were focused largely on the initial submission to the FDA. CONCLUSION: Use of and support for EA is widespread at AMCs, with support focused on single-patient requests. Gaps in support are common for activities after initial submission, such as FDA reporting and data collection.

20.
Sci Rep ; 13(1): 280, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609666

RESUMEN

Indolethylamine N-methyltransferase (INMT) is a transmethylation enzyme that utilizes the methyl donor S-adenosyl-L-methionine to transfer methyl groups to amino groups of small molecule acceptor compounds. INMT is best known for its role in the biosynthesis of N,N-Dimethyltryptamine (DMT), a psychedelic compound found in mammalian brain and other tissues. In mammals, biosynthesis of DMT is thought to occur via the double methylation of tryptamine, where INMT first catalyzes the biosynthesis of N-methyltryptamine (NMT) and then DMT. However, it is unknown whether INMT is necessary for the biosynthesis of endogenous DMT. To test this, we generated a novel INMT-knockout rat model and studied tryptamine methylation using radiometric enzyme assays, thin-layer chromatography, and ultra-high-performance liquid chromatography tandem mass spectrometry. We also studied tryptamine methylation in recombinant rat, rabbit, and human INMT. We report that brain and lung tissues from both wild type and INMT-knockout rats show equal levels of tryptamine-dependent activity, but that the enzymatic products are neither NMT nor DMT. In addition, rat INMT was not sufficient for NMT or DMT biosynthesis. These results suggest an alternative enzymatic pathway for DMT biosynthesis in rats. This work motivates the investigation of novel pathways for endogenous DMT biosynthesis in mammals.


Asunto(s)
N,N-Dimetiltriptamina , Triptaminas , Ratas , Conejos , Humanos , Animales , Metilación , N,N-Dimetiltriptamina/química , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA