RESUMEN
BACKGROUND: Longitudinal records of automatically-recorded vaginal temperature (TV) could be a key source of data for deriving novel indicators of climatic resilience (CR) for breeding more resilient pigs, especially during lactation when sows are at an increased risk of suffering from heat stress (HS). Therefore, we derived 15 CR indicators based on the variability in TV in lactating sows and estimated their genetic parameters. We also investigated their genetic relationship with sows' key reproductive traits. RESULTS: The heritability estimates of the CR traits ranged from 0.000 ± 0.000 for slope for decreased rate of TV (SlopeDe) to 0.291 ± 0.047 for sum of TV values below the HS threshold (HSUB). Moderate to high genetic correlations (from 0.508 ± 0.056 to 0.998 ± 0.137) and Spearman rank correlations (from 0.431 to 1.000) between genomic estimated breeding values (GEBV) were observed for five CR indicators, i.e. HS duration (HSD), the normalized median multiplied by normalized variance (Nor_medvar), the highest TV value of each measurement day for each individual (MaxTv), and the sum of the TV values above (HSUA) and below (HSUB) the HS threshold. These five CR indicators were lowly to moderately genetically correlated with shoulder skin surface temperature (from 0.139 ± 0.008 to 0.478 ± 0.048) and respiration rate (from 0.079 ± 0.011 to 0.502 ± 0.098). The genetic correlations between these five selected CR indicators and sow reproductive performance traits ranged from - 0.733 to - 0.175 for total number of piglets born alive, from - 0.733 to - 0.175 for total number of piglets born, and from - 0.434 to - 0.169 for number of pigs weaned. The individuals with the highest GEBV (most climate-sensitive) had higher mean skin surface temperature, respiration rate (RR), panting score (PS), and hair density, but had lower mean body condition scores compared to those with the lowest GEBV (most climate-resilient). CONCLUSIONS: Most of the CR indicators evaluated are heritable with substantial additive genetic variance. Five of them, i.e. HSD, MaxTv, HSUA, HSUB, and Nor_medvar share similar underlying genetic mechanisms. In addition, individuals with higher CR indicators are more likely to exhibit better HS-related physiological responses, higher body condition scores, and improved reproductive performance under hot conditions. These findings highlight the potential benefits of genetically selecting more heat-tolerant individuals based on CR indicators.
Asunto(s)
Respuesta al Choque Térmico , Lactancia , Animales , Femenino , Lactancia/genética , Porcinos/genética , Porcinos/fisiología , Respuesta al Choque Térmico/genética , Vagina , Temperatura Corporal , Clima , Cruzamiento/métodos , Carácter Cuantitativo HeredableRESUMEN
Selection for resilience indicator (RIND) traits in Holstein cattle is becoming an important breeding objective as the worldwide population is expected to be exposed to increased environmental stressors due to both climate change and changing industry standards. However, genetic correlations between RIND and productivity indicator (PIND) traits, which are already being selected for and have the most economic value, are often unfavorable. As a result, it is necessary to fully understand these genetic relationships when incorporating novel traits into selection indices, so that informed decisions can be made to fully optimize selection for both groups of traits. In the past 2 decades, there have been many estimates of RIND traits published in the literature, albeit in small populations. To provide valuable pooled summary estimates, a random-effects meta-analysis was conducted for heritability and genetic correlation estimates for PIND and RIND traits in worldwide Holstein cattle. In total, 926 heritability estimates for 9 PIND and 27 RIND traits, along with 362 estimates of genetic correlation (PIND × RIND traits) were collected. Resilience indicator traits were grouped into the following subgroups: Metabolic Diseases, Hoof Health, Udder Health, Fertility, Heat Tolerance, Longevity, and Other. Pooled estimates of heritability for PIND traits ranged from 0.201 ± 0.05 (energy-corrected milk) to 0.377 ± 0.06 (protein content), while pooled estimates of heritability for RIND traits ranged from 0.032 ± 0.02 (incidence of lameness, incidence of milk fever) to 0.497 ± 0.05 (measures of body weight). Pooled estimates of genetic correlations ranged from -0.360 ± 0.25 (protein content vs. milk acetone concentration) to 0.535 ± 0.72 (measures of fat-to-protein ratio vs. milk acetone concentration). Additionally, out of 243 potential genetic correlations between PIND and RIND traits that could have been reported, only 40 had enough published estimates to implement the meta-analysis model. Our results confirmed that the interactions between PIND and RIND traits are complex, and all relationships should be evaluated when incorporating novel traits into selection indices. This study provides a valuable reference for breeders looking to incorporate RIND traits for Holstein cattle into selection indices.
RESUMEN
BACKGROUND: Automatic and continuous recording of vaginal temperature (TV) using wearable sensors causes minimal disruptions to animal behavior and can generate data that enable the evaluation of temporal body temperature variation under heat stress (HS) conditions. However, the genetic basis of TV in lactating sows from a longitudinal perspective is still unknown. The objectives of this study were to define statistical models and estimate genetic parameters for TV in lactating sows using random regression models, and identify genomic regions and candidate genes associated with HS indicators derived from automatically-recorded TV. RESULTS: Heritability estimates for TV ranged from 0.14 to 0.20 over time (throughout the day and measurement period) and from 0.09 to 0.18 along environmental gradients (EG, - 3.5 to 2.2, which correspond to dew point values from 14.87 to 28.19 ËC). Repeatability estimates of TV over time and along EG ranged from 0.57 to 0.66 and from 0.54 to 0.77, respectively. TV measured from 12h00 to 16h00 had moderately high estimates of heritability (0.20) and repeatability (0.64), indicating that this period might be the most suitable for recording TV for genetic selection purposes. Significant genotype-by-environment interactions (GxE) were observed and the moderately high estimates of genetic correlations between pairs of extreme EG indicate potential re-ranking of selection candidates across EG. Two important genomic regions on chromosomes 10 (59.370-59.998 Mb) and16 (21.548-21.966 Mb) were identified. These regions harbor the genes CDC123, CAMK1d, SEC61A2, and NUDT5 that are associated with immunity, protein transport, and energy metabolism. Across the four time-periods, respectively 12, 13, 16, and 10 associated genomic regions across 14 chromosomes were identified for TV. For the three EG classes, respectively 18, 15, and 14 associated genomic windows were identified for TV, respectively. Each time-period and EG class had uniquely enriched genes with identified specific biological functions, including regulation of the nervous system, metabolism and hormone production. CONCLUSIONS: TV is a heritable trait with substantial additive genetic variation and represents a promising indicator trait to select pigs for improved heat tolerance. Moderate GxE for TV exist, indicating potential re-ranking of selection candidates across EG. TV is a highly polygenic trait regulated by a complex interplay of physiological, cellular and behavioral mechanisms.
Asunto(s)
Lactancia , Termotolerancia , Porcinos , Animales , Femenino , Lactancia/genética , Temperatura , Genoma , GenómicaRESUMEN
BACKGROUND: Genetic selection based on direct indicators of heat stress could capture additional mechanisms that are involved in heat stress response and enable more accurate selection for more heat-tolerant individuals. Therefore, the main objectives of this study were to estimate genetic parameters for various heat stress indicators in a commercial population of Landrace × Large White lactating sows measured under heat stress conditions. The main indicators evaluated were: skin surface temperatures (SST), automatically-recorded vaginal temperature (TV), respiration rate (RR), panting score (PS), body condition score (BCS), hair density (HD), body size (BS), ear size, and respiration efficiency (Reff). RESULTS: Traits based on TV presented moderate heritability estimates, ranging from 0.15 ± 0.02 to 0.29 ± 0.05. Low heritability estimates were found for SST traits (from 0.04 ± 0.01 to 0.06 ± 0.01), RR (0.06 ± 0.01), PS (0.05 0.01), and Reff (0.03 ± 0.01). Moderate to high heritability values were estimated for BCS (0.29 ± 0.04 for caliper measurements and 0.25 ± 0.04 for visual assessments), HD (0.25 ± 0.05), BS (0.33 ± 0.05), ear area (EA; 0.40 ± 0.09), and ear length (EL; 0.32 ± 0.07). High genetic correlations were estimated among SST traits (> 0.78) and among TV traits (> 0.75). Similarly, high genetic correlations were also estimated for RR with PS (0.87 ± 0.02), with BCS measures (0.92 ± 0.04), and with ear measures (0.95 ± 0.03). Low to moderate positive genetic correlations were estimated between SST and TV (from 0.25 ± 0.04 to 0.76 ± 0.07). Low genetic correlations were estimated between TV and BCS (from - 0.01 ± 0.08 to 0.06 ± 0.07). Respiration efficiency was estimated to be positively and moderately correlated with RR (0.36 ± 0.04), PS (0.56 ± 0.03), and BCS (0.56 ± 0.05 for caliper measurements and 0.50 ± 0.05 for the visual assessments). All other trait combinations were lowly genetically correlated. CONCLUSIONS: A comprehensive landscape of heritabilities and genetic correlations for various thermotolerance indicators in lactating sows were estimated. All traits evaluated are under genetic control and heritable, with different magnitudes, indicating that genetic progress is possible for all of them. The genetic correlation estimates provide evidence for the complex relationships between these traits and confirm the importance of a sub-index of thermotolerance traits to improve heat tolerance in pigs.
Asunto(s)
Trastornos de Estrés por Calor , Termotolerancia , Humanos , Animales , Femenino , Porcinos , Termotolerancia/genética , Temperatura , Lactancia/genética , Respiración , Respuesta al Choque Térmico/genéticaRESUMEN
An accurate understanding of heat stress (HS) temperatures and phenotypes that indicate HS tolerance is necessary to improve swine HS resilience. Therefore, the study objectives were 1) to identify phenotypes indicative of HS tolerance, and 2) to determine moderate and severe HS threshold temperatures in lactating sows. Multiparous (4.10 ± 1.48) lactating sows and their litters (11.10 ± 2.33 piglets/litter) were housed in naturally ventilated (n = 1,015) or mechanically ventilated (n = 630) barns at a commercial sow farm in Maple Hill, NC, USA between June 9 and July 24, 2021. In-barn dry bulb temperatures (TDB) and relative humidity were continuously recorded for naturally ventilated (26.38 ± 1.21 °C and 83.38 ± 5.40%, respectively) and mechanically ventilated (26.91 ± 1.80 °C and 77.13 ± 7.06%, respectively) barns using data recorders. Sows were phenotyped between lactation days 11.28 ± 3.08 and 14.25 ± 3.26. Thermoregulatory measures were obtained daily at 0800, 1200, 1600, and 2000 h and included respiration rate, and ear, shoulder, rump, and tail skin temperatures. Vaginal temperatures (TV) were recorded in 10 min intervals using data recorders. Anatomical characteristics were recorded, including ear area and length, visual and caliper-assessed body condition scores, and a visually assessed and subjective hair density score. Data were analyzed using PROC MIXED to evaluate the temporal pattern of thermoregulatory responses, phenotype correlations were based on mixed model analyses, and moderate and severe HS inflection points were established by fitting TV as the dependent variable in a cubic function against TDB. Statistical analyses were conducted separately for sows housed in mechanically or naturally ventilated barns because the sow groups were not housed in each facility type simultaneously. The temporal pattern of thermoregulatory responses was similar for naturally and mechanically ventilated barns and several thermoregulatory and anatomical measures were significantly correlated with one another (P < 0.05), including all anatomical measures as well as skin temperatures, respiration rates, and TV. For sows housed in naturally and mechanically ventilated facilities, moderate HS threshold TDB were 27.36 and 26.69 °C, respectively, and severe HS threshold TDB were 29.45 and 30.60 °C, respectively. In summary, this study provides new information on the variability of HS tolerance phenotypes and environmental conditions that constitute HS in commercially housed lactating sows.
Climate change and the associated increase in global temperatures have a well-described negative impact on swine production. Therefore, improving swine heat stress resilience is of utmost importance to reduce the deleterious effects of heat stress on swine health, performance, and welfare. Genomic selection for heat stress resilience may be a viable strategy to improve swine productivity in a changing climate. However, identifying environmental conditions that constitute heat stress and deriving novel traits that can be easily collected on farm and provide accurate and precise predictions of heat stress tolerance is a necessary step. The present study demonstrated that housing conditions had a limited influence on heat stress tolerance phenotypes, several anatomical and thermoregulatory measures were correlated, and housing conditions impacted heat stress threshold temperatures. Results from this study may be applied to large-scale phenotyping initiatives to develop or refine genomic selection indexes for heat stress resilience in pigs.
Asunto(s)
Lactancia , Termotolerancia , Porcinos , Animales , Femenino , Lactancia/fisiología , Respuesta al Choque Térmico , Regulación de la Temperatura Corporal , Temperatura CorporalRESUMEN
This study aimed to determine what effects in utero heat stress (IUHS) in pigs may have on quality of processed pork products. In two experiments, patties and emulsion sausages were prepared from lean and fat from pigs subjected to IUHS or in utero thermoneutral (IUTN) conditions. Patties formulated to contain 25% added fat had altered textural properties compared to those without additional fat, as shown by lower hardness, cohesiveness, springiness, and chewiness values (p < 0.05), which was not affected by IUHS treatment. Neither fat content nor IUHS treatment affected fluid losses of patties (p > 0.05). In general, 25% added fat patties had greater L*, a*, b*, hue angle, and chroma values than lean patties (p < 0.05). However, 25% added fat patties from the IUHS treatment maintained superior color stability during aerobic display, despite lean patties from this treatment exhibiting increased lipid oxidation (p < 0.05). For emulsion sausages, minimal differences in quality attributes and oxidative stability were found between treatment groups. Subcutaneous fat from IUHS pigs had greater C20:1 and C20:2 than IUTN (p < 0.05), although the magnitude of these differences was slight. Overall, the findings of this study suggest IUHS would have minimal impacts on the functional properties of raw pork, resulting in similar final quality of processed products to IUTN.
RESUMEN
In utero heat stress alters postnatal physiological and behavioral stress responses in pigs. However, the mechanisms underlying these alterations have not been determined. The study objective was to characterize the postnatal hypothalamic-pituitary-adrenal axis response of in utero heat-stressed pigs. Pigs were subjected to a dexamethasone suppression test followed by a corticotrophin releasing hormone challenge at 10 and 15 weeks of age. Following the challenge, hypothalamic, pituitary, and adrenal tissues were collected from all pigs for mRNA abundance analyses. At 10 weeks of age, in utero heat-stressed pigs had a reduced (P < 0.05) cortisol response to the corticotrophin releasing hormone challenge versus controls. Additionally, the cortisol response tended to be greater overall (P < 0.10) in 15 versus 10-week-old pigs in response to the dexamethasone suppression test. The cortisol response tended to be reduced overall (P < 0.10) in 15 versus 10-week-old pigs in response to the corticotrophin releasing hormone challenge. Hypothalamic corticotropin releasing hormone mRNA abundance tended to be greater (P < 0.10) in in utero heat-stressed versus control pigs at 15-weeks of age. In summary, in utero heat stress altered some aspects of the hypothalamic-pituitary-adrenal axis related to corticotropin releasing hormone signaling, and age influenced this response.
Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Respuesta al Choque Térmico , Sistema Hipotálamo-Hipofisario/crecimiento & desarrollo , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/crecimiento & desarrollo , Sistema Hipófiso-Suprarrenal/fisiología , Animales , Dexametasona/farmacología , Femenino , Hidrocortisona/metabolismo , Hipotálamo/metabolismo , Inflamación , Masculino , Neurofisiología , ARN Mensajero/metabolismo , Porcinos , Factores de TiempoRESUMEN
This study evaluated the impacts of in utero heat stress (IUHS) on the carcass and meat quality traits of offspring when market weight was reached. Twenty-four F1 Landrace × Large White gilts were blocked by body weight and allocated among thermoneutral (IUTN) or IUHS treatments from d 6 to d 59 of gestation. The offspring were raised under identical thermoneutral conditions, and gilts (n = 10/treatment) at market weight (117.3 ± 1.7 kg) were harvested. At 24 h postmortem, the loins (M. longissimus lumborum) were obtained, and sections were allocated among 1 d and 7 d aging treatments at 2 °C. Carcasses from IUHS pigs had lower head and heart weights (p < 0.05), as well as decreased loin muscle area (p < 0.05) compared to IUTN pigs. Loins from the IUHS group had a higher shear force value than the IUTN group (p < 0.05). Treatments had no other impacts on carcass and meat quality traits (p > 0.05), and Western blots suggested increased toughness of IUHS loins would not be attributed to proteolysis. These results suggest minimizing IUHS during the first half of gestation may be beneficial in improving pork yield and quality, though in general the effects of IUHS would be minimal.
RESUMEN
The study objective was to evaluate the effects of feed removal during acute heat stress (HS) on the cytokine response and its short-term effect on growth performance in finishing pigs. Thirty-two pigs (93.29 ± 3.14 kg initial body weight; 50% barrows and 50% gilts) were subjected to thermoneutral (TN; 23.47 ± 0.10 °C; n = 16 pigs) or HS (cycling of 25 to 36 °C; n = 16 pigs) conditions for 24 h. Within each temperature treatment, 50% of the pigs were provided with feed (AF; n = 8 pigs/temperature treatment) and 50% of the pigs had no feed access (NF; n = 8 pigs/temperature treatment). Following the 24 h temperature and feeding treatment (TF) period, all pigs had ad libitum access to feed and water and were maintained under TN conditions for 6 d. During the first 12 h of the TF period, gastrointestinal (TGI) and skin (Tsk) temperatures were recorded every 30 min. Serum cytokines were determined at 0, 4, 8, 12, and 24 h during the TF period and on Days 3 and 6 of the post-TF period. Average daily gain (ADG) and average daily feed intake were measured on Days 1, 3, and 6 of the post-TF period. Behavioral data were collected from Days 1 to 6 of the post-TF period. Heat stress increased (p < 0.02) the TGI and Tsk. During the post-TF period, interleukin-1α was greater (p < 0.01) in HS + NF compared to HS + AF and TN + NF pigs. From Days 1 to 2 of the post-TF period, the ADG was reduced (p < 0.01) in TN + AF compared to HS + AF, HS + NF, and TN + NF pigs. In conclusion, feed removal during an acute HS challenge did not reduce the cytokine response or improve short-term growth performance in finishing pigs.
RESUMEN
The effects of in utero heat stress (IUHS) range from decreased growth performance to altered behavior, but the long-term impact of IUHS on postnatal innate immune function in pigs is unknown. Therefore, the study objective was to determine the effects of early gestation IUHS on the immune, metabolic, and stress response of pigs subjected to an 8 hr lipopolysaccharide (LPS) challenge during postnatal life. Twenty-four pregnant gilts were exposed to thermoneutral (TN; n = 12; 17.5 ± 2.1 °C) or heat stress (HS; n = 12; cyclic 26 to 36 °C) conditions from days 6 to 59 of gestation, and then TN conditions (20.9 ± 2.3 °C) from day 60 of gestation to farrowing. At 12 wk of age, 16 IUHS and 16 in utero thermoneutral (IUTN) pigs were selected, balanced by sex and given an intravenous injection of LPS (2 µg/kg BW mixed with sterile saline [SAL] and injected at 2 µL/kg BW) or SAL (2 µL/kg BW). Body temperature was monitored every 30 min, and blood was obtained at 0, 1, 2, 3, 4, 6, and 8 hr following the LPS challenge. Blood samples were analyzed for glucose, insulin, non-esterified fatty acids (NEFA), cortisol, and cytokine concentrations. In addition, white blood cell counts were determined at 0 and 4 hr. Hour 0 data were used as covariates. Body temperature was increased (P < 0.01) in LPS (40.88 ± 0.08 °C) vs. SAL (39.83 ± 0.08 °C) pigs. Eosinophils tended to be decreased overall (P = 0.09; 43.9%) in IUHS vs. IUTN pigs. Glucose concentrations were reduced overall (P = 0.05; 5.9%) in IUHS vs. IUTN pigs. The NEFA concentrations tended to be greater (P = 0.07; 143.4%) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs tended to have greater (127.4%) circulating NEFA concentrations compared with IUTN-SAL and IUHS-SAL pigs. Cortisol was increased (P = 0.04) in IUHS-LPS compared with IUTN-LPS pigs at 3 hr (21.5%) and 4 hr (64.3%). At 1 hr, tumor necrosis factor α was increased (P = 0.01; 115.1%) in IUHS-LPS compared with IUTN-LPS pigs. Overall, interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were greater (P < 0.04; 281.3% and 297.8%, respectively) in IUHS-LPS pigs compared with all other treatments, and IUTN-LPS pigs had increased IL-1ß and IL-6 concentrations compared with IUTN-SAL and IUHS-SAL pigs. In summary, IUHS altered the postnatal cytokine, metabolic, and physiological stress response of pigs during postnatal life, which may have negative implications toward the innate immune response of IUHS pigs to pathogens.
Asunto(s)
Trastornos de Estrés por Calor , Animales , Temperatura Corporal , Femenino , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Inmunidad Innata , Lipopolisacáridos , Embarazo , Sus scrofa , PorcinosRESUMEN
In utero heat stress (IUHS) increases the energy requirements of pigs during postnatal life, and this may compound weaning and transport stress. The study objective was to evaluate and mitigate the negative effects of IUHS following weaning and transport through the provision of a nutrient-dense (ND) nursery diet formulated to meet the greater energy requirements of IUHS pigs during the first 14 d postweaning and transport. Twenty-four pregnant gilts were exposed to thermoneutral (TN; n = 12; 17.5 ± 2.1 °C) or heat stress (HS; n = 12; cycling 26 to 36 °C) conditions for the first half of gestation (day 6 to 59) and then TN conditions (20.9 ± 2.3 °C) until farrowing. Nine TN gilts and 12 HS gilts produced litters. At weaning (16.2 ± 0.4 d), mixed-sex piglets (N = 160; 4.78 ± 0.15 kg body weight [BW]) were transported (loading + transport + unloading) for 11 h 40 min. Following transport, piglets were blocked into pens (n = 4 pigs/pen) by in utero and dietary treatments: in utero thermoneutral (IUTN) + control (C) diet (n = 10 pens), IUTN + ND (n = 10 pens), IUHS + C (n = 10 pens), and IUHS + ND (n = 10 pens). Treatment diets were fed from day 1 to 14 postweaning and transport (period 1), and the C diet was fed to all pigs from day 14 to 35 postweaning and transport (period 2). Production measures were taken in 7 d intervals to calculate average daily gain (ADG), average daily feed intake (ADFI), average daily net energy intake (ADEI), gain:feed, and gain:net energy intake. Blood samples were collected prior to transport, following transport, and on days 2, 7, 14, 28, and 35 postweaning and transport to analyze cortisol, glucose, insulin, and nonesterified fatty acids. Behavior was assessed through video-recording on days 3, 5, 8, 11, and 13 postweaning and transport. In period 1, ADG was reduced (P = 0.04; 20.0 g/d) in IUHS vs. IUTN pigs. Pigs fed ND diets had reduced ADFI (P = 0.02; 9.3%) compared with C diet-fed pigs during period 1, which resulted in similar ADEI (P = 0.23; 1,115 ± 35 kcal/d). During transport, cortisol was decreased (P = 0.03; 25.8%) in IUHS vs. IUTN pigs. On day 2, glucose was decreased (P = 0.01; 13.8%) in IUHS vs. IUTN pigs. No in utero treatment-related behavior differences were observed but lying was reduced (P = 0.03; 6.5%) and standing was increased (P = 0.04; 14.1%) in ND vs. C pigs overall. In summary, IUHS reduced growth performance in pigs following weaning and transport, and providing an ND diet did not rescue the lost performance.
Asunto(s)
Ingestión de Energía , Respuesta al Choque Térmico , Porcinos , Destete , Alimentación Animal/análisis , Animales , Peso Corporal , Dieta , Femenino , Trastornos de Estrés por Calor/veterinaria , Embarazo , Enfermedades de los PorcinosRESUMEN
Feed consumption increases body temperature and may delay a return to euthermia and exacerbate intestinal injury following acute hyperthermia recovery in pigs. Therefore, the study objective was to evaluate the effects of feed removal on body temperature and intestinal morphology in pigs exposed to acute hyperthermia and then rapidly cooled. Twenty-four gilts (78.53 ± 5.46 kg) were exposed to thermoneutral (TN; n = 12 pigs; 21.21 ± 0.31 °C; 61.88 ± 6.93% RH) conditions for 6 h, or heat stress (HS; 38.51 ± 0.60 °C; 36.38 ± 3.40% RH) conditions for 3 h followed by a 3-h recovery period of rapid cooling (HSC;n = 12 pigs; TN conditions and cold water dousing). Within each recovery treatment, one-half of the pigs were provided feed ad libitum (AF; n = 6 pigs per recovery treatment) and one-half of the pigs were not provided feed (NF; n = 6 pigs per recovery treatment). Gastrointestinal (TGI), vaginal (TV), and skin (TSK) temperatures and respiration rate (RR) were recorded every 15 min. Pigs were video-recorded to assess feeding and drinking attempts. Immediately following the 6-h thermal stress period, pigs were euthanized, and intestinal samples were collected to assess morphology. During the HS period, Tv, TGI, TSK, and RR were increased (P < 0.01; 1.63, 2.05, 8.32 °C, and 88 breaths per min, respectively) in HSC vs. TN pigs, regardless of feeding treatment. Gastrointestinal temperature was greater (P = 0.03; 0.97 °C) in HSC + AF vs. HSC + NF pigs from 45 to 180 min of the recovery period. During the recovery period, feeding attempts were greater (P = 0.02; 195.38%) in AF vs. NF pigs. No drinking attempt differences were detected with any comparison (P > 0.05). A decrease (P < 0.01) in jejunum and ileum villus height (24.72% and 26.11%, respectively) and villus height-to-crypt depth ratio (24.03% and 25.29%, respectively) was observed in HSC vs. TN pigs, regardless of feeding treatment. Ileum goblet cells were reduced (P = 0.01; 37.87%) in HSC vs. TN pigs, regardless of feeding treatment. In summary, TGI decreased more rapidly following acute hyperthermia when the feed was removed, and this may have implications toward using feed removal as a strategy to promote acute hyperthermia recovery in pigs.
Asunto(s)
Alimentación Animal/efectos adversos , Regulación de la Temperatura Corporal , Ingestión de Alimentos , Fiebre/veterinaria , Porcinos/fisiología , Animales , Temperatura Corporal , Frío , Femenino , Tracto Gastrointestinal/citología , Respuesta al Choque Térmico , Calor , Mucosa Intestinal/citología , Intestinos/citología , Frecuencia RespiratoriaRESUMEN
The ability to determine total heat production (THP) in individual sows and litters can be logistically difficult and often requires the use of multiple animals to generate data on a per room basis. Furthermore, these systems may be costly to construct, precluding their use by many researchers. Therefore, the objective was to develop a low-cost indirect calorimetry system to determine THP in individual lactating sows and litters. Six indirect calorimeters were constructed to house 1 sow and litter in a crate throughout farrowing and a 21-d lactation period. Farrowing crates were placed within a high-density polyethylene pan filled with water and then a polyvinyl chloride frame was constructed around the crate. The frame provided a structure to hold the inlet and outlet air pipes, feed and water inlets, air circulation fans, and a polyethylene plastic sheet that was secured at the bottom of the frame and submerged under water to maintain an air tight seal. Chamber accuracies for O2 and CO2 were evaluated by ethanol combustion. One week pre-farrowing, 6 pregnant multiparous sows (parity 2.9 ± 0.9; 218.3 ± 38.6 kg BW) were housed individually in each farrowing crate and the calorimeters were maintained at thermoneutral conditions (20.9 ± 2.6°C and 43.7 ± 18.6% relative humidity) throughout lactation. On lactation day 4, 8, 14, and 18, indirect calorimetry was performed on all sows and their litters, as well as 2 piglets from a sentinel litter to determine THP and the respiratory quotient (RQ). Sentinel piglet data were used to estimate THP and RQ for the sows independent of the litter. Sow + litter THP (kcal/h) increased (P = 0.01; 16.6%) on day 8 compared to day 4 and was greater (27.3%) on day 14 and day 18 compared to day 4 and day 8. Sow THP was greater (P = 0.01) on day 8 (401.19 ± 17.15 kcal/h) and day 14 (430.79 ± 12.42 kcal/h) compared to day 4 (346.16 ± 16.62 kcal/h), and was greater on day 14 compared to day 8, and on day 18 (386.16 ± 20.02 kcal/h) compared to day 14. No sow + litter RQ differences (P = 0.21; 1.02 ± 0.04) were detected by day of lactation. However, sow RQ was reduced (P = 0.01) on day 14 (0.98 ± 0.02) compared to day 4 (1.03 ± 0.03), day 8 (1.02 ± 0.02), and day 18 (1.04 ± 0.03). In summary, this cost-effective system (total cost: $1,892 USD) can allow researchers to accurately evaluate THP in individual lactating sows and their litters.