Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ALTEX ; 38(1): 140-150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33452529

RESUMEN

The use of new approach methodologies (NAMs) in support of read-across (RAx) approaches for regulatory purposes is a main goal of the EU-ToxRisk project. To bring this forward, EU-ToxRisk partners convened a workshop in close collaboration with regulatory representatives from key organizations including European regulatory agencies, such as the European Chemicals Agency (ECHA) and the European Food Safety Authority (EFSA), as well as the Scientific Committee on Consumer Safety (SCCS), national agencies from several European countries, Japan, Canada and the USA, as well as the Organisation for Economic Cooperation and Development (OECD). More than a hundred people actively participated in the discussions, bringing together diverse viewpoints across academia, regulators and industry. The discussion was organized starting from five practical cases of RAx applied to specific problems that offered the oppor-tunity to consider real examples. There was general consensus that NAMs can improve confidence in RAx, in particular in defining category boundaries as well as characterizing the similarities/dissimilarities between source and target substances. In addition to describing dynamics, NAMs can be helpful in terms of kinetics and metabolism that may play an important role in the demonstration of similarity or dissimilarity among the members of a category. NAMs were also noted as effective in providing quanti-tative data correlated with traditional no observed adverse effect levels (NOAELs) used in risk assessment, while reducing the uncertainty on the final conclusion. An interesting point of view was the advice on calibrating the number of new tests that should be carefully selected, avoiding the allure of "the more, the better". Unfortunately, yet unsurprisingly, there was no single approach befitting every case, requiring careful analysis delineating the optimal approach. Expert analysis and assessment of each specific case is still an important step in the process.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Análisis de Datos , Relación Estructura-Actividad , Pruebas de Toxicidad/métodos , Animales , Simulación por Computador , Unión Europea , Humanos , Legislación de Medicamentos , Nivel sin Efectos Adversos Observados , Organización para la Cooperación y el Desarrollo Económico , Medición de Riesgo/métodos
2.
Nanotoxicology ; 14(7): 985-1007, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32619159

RESUMEN

Recent studies reported adverse liver effects and intestinal tumor formation after oral exposure to titanium dioxide (TiO2). Other oral toxicological studies, however, observed no effects on liver and intestine, despite prolonged exposure and/or high doses. In the present assessment, we aimed to better understand whether TiO2 can induce such effects at conditions relevant for humans. Therefore, we focused not only on the clinical and histopathological observations, but also used Adverse Outcome Pathways (AOPs) to consider earlier steps (Key Events). In addition, aiming for a more accurate risk assessment, the available information on organ concentrations of Ti (resulting from exposure to TiO2) from oral animal studies was compared to recently reported concentrations found in human postmortem organs. The overview obtained with the AOP approach indicates that TiO2 can trigger a number of key events in liver and intestine: Reactive Oxygen Species (ROS) generation, induction of oxidative stress and inflammation. TiO2 seems to be able to exert these early effects in animal studies at Ti liver concentrations that are only a factor of 30 and 6 times higher than the median and highest liver concentration found in humans, respectively. This confirms earlier conclusions that adverse effects on the liver in humans as a result of (oral) TiO2 exposure cannot be excluded. Data for comparison with Ti levels in human intestinal tissue, spleen and kidney with effect concentrations were too limited to draw firm conclusions. The Ti levels, though, are similar or higher than those found in liver, suggesting these tissues may be relevant too.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Nanopartículas/toxicidad , Bazo/efectos de los fármacos , Titanio/toxicidad , Administración Oral , Animales , Aditivos Alimentarios/química , Aditivos Alimentarios/metabolismo , Aditivos Alimentarios/toxicidad , Humanos , Inflamación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Nanopartículas/química , Nanopartículas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Titanio/química , Titanio/metabolismo
3.
Integr Environ Assess Manag ; 15(4): 633-647, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30908812

RESUMEN

There have been increasing demands for chemical hazard and risk assessments in recent years. Chemical companies have expanded internal product stewardship initiatives, and jurisdictions have increased the regulatory requirements for the manufacture and sale of chemicals. There has also been a shift in chemical toxicity evaluations within the same time frame, with new methodologies being developed to improve chemical safety assessments for both human health and the environment. With increased needs for chemical assessments coupled with more diverse data streams from new technologies, regulators and others tasked with chemical management activities are faced with increasing workloads and more diverse types of data to consider. The Adverse Outcome Pathway (AOP) framework can be applied in different scenarios to integrate data and guide chemical assessment and management activities. In this paper, scenarios of how AOPs can be used to guide chemical management decisions during research and development, chemical registration, and subsequent regulatory activities such as prioritization and risk assessment are considered. Furthermore, specific criteria (e.g., the type and level of AOP complexity, confidence in the AOP, as well as external review and assay validation) are proposed to examine whether AOPs and associated tools are fit for purpose when applied in different contexts. Certain toxicity pathways are recommended as priority areas for AOP research and development, and the continued use of AOPs and defined approaches in regulatory activities are recommended. Furthermore, a call for increased outreach, education, and enhanced use of AOP databases is proposed to increase their utility in chemicals management. Integr Environ Assess Manag 2019;15:633-647. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Rutas de Resultados Adversos/estadística & datos numéricos , Ecotoxicología/métodos , Política Ambiental/legislación & jurisprudencia , Regulación Gubernamental , Sustancias Peligrosas , Bases de Datos Factuales/estadística & datos numéricos , Toma de Decisiones , Humanos , Medición de Riesgo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA