Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38179087

RESUMEN

Purpose: Having dedicated MRI scanners within radiation oncology departments may present unexpected challenges since radiation oncologists and radiation therapists are generally not trained in this modality and there are potential patient safety concerns. This study retrospectively reviews the incidental findings and safety events that were observed at a single institution during introduction of MRI sim for head and neck radiotherapy planning. Methods: Consecutive patients from March 1, 2020, to May 31, 2022, who were scheduled for MRI sim after having completed CT simulation for head and neck radiotherapy were included for analysis. Patients first underwent a CT simulation with a thermoplastic mask and in most cases with an intraoral stent. The same setup was then reproduced in the MRI simulator. Safety events were instances where scheduled MRI sims were not completed due to the MRI technologist identifying MRI-incompatible devices or objects at the time of sim. Incidental findings were identified during weekly quality assurance rounds as a joint enterprise of head and neck radiation oncology and neuroradiology. Categorical variables between completed and not completed MRI sims were compared using the Chi-Square test and continuous variables were compared using the Mann-Whitney U test with a p-value of < 0.05 considered to be statistically significant. Results: 148 of 169 MRI sims (88 %) were completed as scheduled and 21 (12 %) were not completed (Table 1). Among the 21 aborted MRI sims, the most common reason was due to safety events flagged by the MRI technologist (n = 8, 38 %) because of the presence of metal or a medical device that was not noted at the time of initial screening by the administrative coordinator. Patients who did not complete MRI sim were more likely to be treated for non-squamous head and neck primary tumor (p = 0.016) and were being treated post-operatively (p < 0.001). CT and MRI sim scans each had 17 incidental findings. CT simulation detected 3 cases of new metastases in lungs, which were outside the scan parameters of MRI sim. MRI sim detected one case of dural venous thrombosis and one case of cervical spine epidural abscess, which were not detected by CT simulation. Conclusions: Radiation oncology departments with dedicated MRI simulation scanners would benefit from diagnostic radiology review for incidental findings and having therapists with MRI safety credentialing to catch near-miss events.

2.
PLoS Pathog ; 18(9): e1010802, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095030

RESUMEN

The impact of vaccination on SARS-CoV-2 infectiousness is not well understood. We compared longitudinal viral shedding dynamics in unvaccinated and fully vaccinated adults. SARS-CoV-2-infected adults were enrolled within 5 days of symptom onset and nasal specimens were self-collected daily for two weeks and intermittently for an additional two weeks. SARS-CoV-2 RNA load and infectious virus were analyzed relative to symptom onset stratified by vaccination status. We tested 1080 nasal specimens from 52 unvaccinated adults enrolled in the pre-Delta period and 32 fully vaccinated adults with predominantly Delta infections. While we observed no differences by vaccination status in maximum RNA levels, maximum infectious titers and the median duration of viral RNA shedding, the rate of decay from the maximum RNA load was faster among vaccinated; maximum infectious titers and maximum RNA levels were highly correlated. Furthermore, amongst participants with infectious virus, median duration of infectious virus detection was reduced from 7.5 days (IQR: 6.0-9.0) in unvaccinated participants to 6 days (IQR: 5.0-8.0) in those vaccinated (P = 0.02). Accordingly, the odds of shedding infectious virus from days 6 to 12 post-onset were lower among vaccinated participants than unvaccinated participants (OR 0.42 95% CI 0.19-0.89). These results indicate that vaccination had reduced the probability of shedding infectious virus after 5 days from symptom onset.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/prevención & control , Humanos , Estudios Longitudinales , ARN Viral/genética , Vacunación , Esparcimiento de Virus
3.
Open Forum Infect Dis ; 9(2): ofab640, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35106317

RESUMEN

BACKGROUND: There is mounting evidence for the presence of postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC), but there is limited information on the spectrum, magnitude, duration, and patterns of these sequelae as well as their influence on quality of life. METHODS: We assembled a cohort of adults with a documented history of SARS-CoV-2 RNA positivity at ≥2 weeks past onset of coronavirus disease 2019 (COVID-19) symptoms or, if asymptomatic, first positive test. At 4-month intervals, we queried physical and mental health symptoms and quality of life. RESULTS: Of the first 179 participants enrolled, 10 were asymptomatic during the acute phase of SARS-CoV-2 infection, 125 were symptomatic but not hospitalized, and 44 were symptomatic and hospitalized. During the postacute phase, fatigue, shortness of breath, concentration problems, headaches, trouble sleeping, and anosmia/dysgeusia were most common through 8 months of observation. Symptoms were typically at least somewhat bothersome and sometimes exhibited a waxing-and-waning course. Some participants experienced symptoms of depression, anxiety, and post-traumatic stress, as well as difficulties with performance of usual activities. The median visual analogue scale rating of general health was lower at 4 and 8 months compared with pre-COVID-19. Two clusters of symptom domains were identified. CONCLUSIONS: Many participants report bothersome symptoms following onset of COVID-19 with variable patterns of persistence and impact on quality of life. The substantial variability suggests the existence of multiple subphenotypes of PASC. A rigorous approach to the prospective measurement of symptoms and functional manifestations sets the stage for the next phase of research focusing on the pathophysiologic causes of the various subgroups of PASC.

4.
Am J Trop Med Hyg ; 105(4): 884-889, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34370705

RESUMEN

Evaluating cases of reinfection may offer some insight into areas for further investigation regarding durability of immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sixty cases of reinfection with viral sequencing were identified in PubMed, Embase, Web of Science, and medRxiv before May 1, 2021.Episodes of infection were separated by a median of 116 days. Severity of illness was greater among individuals reinfected within 90 days of initial infection, no asymptomatic initial cases developed severe reinfection, nearly half of cases had suspected escape variants, and nearly all individuals tested following reinfection were found to have detectable levels of anti-SARS-CoV-2 antibodies. This analysis is limited by the heterogeneous methods used among reports. Reinfection continues to be relatively rare. As the case rate presumably increases over time, this review will inform measurements to determine the natural history and causal determinants of reinfection in more rigorous observational cohort studies and other standardized surveillance approaches.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Reinfección/virología , SARS-CoV-2 , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia
5.
medRxiv ; 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33758895

RESUMEN

BACKGROUND: As the coronavirus disease 2019 (COVID-19) pandemic continues and millions remain vulnerable to infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), attention has turned to characterizing post-acute sequelae of SARS-CoV-2 infection (PASC). METHODS: From April 21 to December 31, 2020, we assembled a cohort of consecutive volunteers who a) had documented history of SARS-CoV-2 RNA-positivity; b) were ≥ 2 weeks past onset of COVID-19 symptoms or, if asymptomatic, first test for SARS-CoV-2; and c) were able to travel to our site in San Francisco. Participants learned about the study by being identified on medical center-based registries and being notified or by responding to advertisements. At 4-month intervals, we asked participants about physical symptoms that were new or worse compared to the period prior to COVID-19, mental health symptoms and quality of life. We described 4 time periods: 1) acute illness (0-3 weeks), 2) early recovery (3-10 weeks), 3) late recovery 1 (12-20 weeks), and 4) late recovery 2 (28-36 weeks). Blood and oral specimens were collected at each visit. RESULTS: We have, to date, enrolled 179 adults. During acute SARS-CoV-2 infection, 10 had been asymptomatic, 125 symptomatic but not hospitalized, and 44 symptomatic and hospitalized. In the acute phase, the most common symptoms were fatigue, fever, myalgia, cough and anosmia/dysgeusia. During the post-acute phase, fatigue, shortness of breath, concentration problems, headaches, trouble sleeping and anosmia/dysgeusia were the most commonly reported symptoms, but a variety of others were endorsed by at least some participants. Some experienced symptoms of depression, anxiety, and post-traumatic stress, as well as difficulties with ambulation and performance of usual activities. The median visual analogue scale value rating of general health was lower at 4 and 8 months (80, interquartile range [IQR]: 70-90; and 80, IQR 75-90) compared to prior to COVID-19 (85; IQR 75-90). Biospecimens were collected at nearly 600 participant-visits. CONCLUSION: Among a cohort of participants enrolled in the post-acute phase of SARS-CoV-2 infection, we found many with persistent physical symptoms through 8 months following onset of COVID-19 with an impact on self-rated overall health. The presence of participants with and without symptoms and ample biological specimens will facilitate study of PASC pathogenesis. Similar evaluations in a population-representative sample will be needed to estimate the population-level prevalence of PASC.

6.
Radiology ; 299(1): 167-176, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33560189

RESUMEN

Background For patients with acute ischemic stroke undergoing endovascular mechanical thrombectomy with x-ray angiography, the use of adjuncts to maintain vessel patency, such as stents or antiplatelet medications, can increase risk of periprocedural complications. Criteria for using these adjuncts are not well defined. Purpose To evaluate use of MRI to guide critical decision making by using a combined biplane x-ray neuroangiography 3.0-T MRI suite during acute ischemic stroke intervention. Materials and Methods This retrospective observational study evaluated consecutive patients undergoing endovascular intervention for acute ischemic stroke between July 2019 and May 2020 who underwent either angiography with MRI or angiography alone. Cerebral tissue viability was assessed by using MRI as the reference standard. For statistical analysis, Fisher exact test and Student t test were used to compare groups. Results Of 47 patients undergoing acute stroke intervention, 12 patients (median age, 69 years; interquartile range, 60-77 years; nine men) underwent x-ray angiography with MRI whereas the remaining 35 patients (median age, 80 years; interquartile range, 68-86 years; 22 men) underwent angiography alone. MRI results influenced clinical decision making in one of three ways: whether or not to perform initial or additional mechanical thrombectomy, whether or not to place an intracranial stent, and administration of antithrombotic or blood pressure medications. In this initial experience, decision making during endovascular acute stroke intervention in the combined angiography-MRI suite was better informed at MRI, such that therapy was guided in real time by the viability of the at-risk cerebral tissue. Conclusion Integrating intraprocedural 3.0-T MRI into acute ischemic stroke treatment was feasible and guided decisions of whether or not to continue thrombectomy, to place stents, or to administer antithrombotic medication or provide blood pressure medications. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Lev and Leslie-Mazwi in this issue.


Asunto(s)
Angiografía Cerebral/métodos , Toma de Decisiones , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/cirugía , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/cirugía , Trombectomía/métodos , Anciano , Femenino , Humanos , Recién Nacido , Periodo Intraoperatorio , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
7.
Int IEEE EMBS Conf Neural Eng ; 2019: 843-846, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31178980

RESUMEN

Electrical stimulation using non-periodic biomimetic stimulation pattern has been shown to be effective in various critical biomedical applications. However, the existing programmable stimulators that support this protocol are non-portable and have architectures that are not translatable to wearable or implantable applications. In this work, we present a 32-channel neural stimulator system based on an implantable System-On-Chip (SoC) that addresses these technological challenges. The system is designed to be portable, powered by a single battery, wirelessly controlled, and versatile to perform concurrent multi-channel stimulation with independent arbitrary waveforms. The experimental results demonstrate multi-channel stimulation mimicking electromyography (EMG) waveforms and randomly-spaced stimulation pulses mimicking neuronal firing patterns. This compact and highly flexible prototype can support various neuromodulation researches and animal studies and serves as a precursor for the development of the next generation implantable biomimetic stimulator.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5487-5490, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441579

RESUMEN

The efficacy of many clinical applications of electrical stimulation is currently gauged only by patients' verbal feedback or through the use of an independent system, limiting physicians' ability to provide quality treatment. By integrating neural response recording into the system, though, more accurate measures of treatment effectiveness are possible. This paper presents a platform which enables wireless control of an implantable bioelectronic device which integrates functional electrical stimulation and simultaneous recording of neural activity for a wide range of potential applications including motor function prostheses for spinal cord injury, retinal prostheses, and treatments for various other conditions. The proposed wireless platform utilizes a mobile application to offer a user-friendly integrated interface that enables setup and execution of stimulation and collection of recording data in animal studies. This platform will also support the continuing development of closed-loop neuromodulation strategies for investigating potential therapies for various diseases.


Asunto(s)
Traumatismos de la Médula Espinal , Animales , Estimulación Eléctrica , Humanos , Prótesis e Implantes , Resultado del Tratamiento
9.
IEEE Trans Biomed Circuits Syst ; 11(3): 497-509, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28489550

RESUMEN

This paper presents a wirelessly powered, fully integrated system-on-a-chip (SoC) supporting 160-channel stimulation, 16-channel recording, and 48-channel bio-impedance characterization to enable partial motor function recovery through epidural spinal cord electrical stimulation. A wireless transceiver is designed to support quasi full-duplex data telemetry at a data rate of 2 Mb/s. Furthermore, a unique in situ bio-impedance characterization scheme based on time-domain analysis is implemented to derive the Randles cell electrode model of the electrode-electrolyte interface. The SoC supports concurrent stimulation and recording while the high-density stimulator array meets an output compliance voltage of up to ±10 V with versatile stimulus programmability. The SoC consumes 18 mW and occupies a chip area of 5.7 mm × 4.4 mm using 0.18 µm high-voltage CMOS process. In our in vivo rodent experiment, the SoC is used to perform wireless recording of EMG responses while stimulation is applied to enable the standing and stepping of a paralyzed rat. To facilitate the system integration, a novel thin film polymer packaging technique is developed to provide a heterogeneous integration of the SoC, coils, discrete components, and high-density flexible electrode array, resulting in a miniaturized prototype implant with a weight and form factor of 0.7 g and 0.5 cm3, respectively.


Asunto(s)
Prótesis e Implantes , Recuperación de la Función , Traumatismos de la Médula Espinal , Tecnología Inalámbrica , Animales , Electrodos , Electromiografía , Diseño de Equipo , Ratas , Telemetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...