Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(4): 041001, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335333

RESUMEN

With excellent energy resolution and ultralow-level radiogenic backgrounds, the high-purity germanium detectors in the Majorana Demonstrator enable searches for several classes of exotic dark matter (DM) models. In this work, we report new experimental limits on keV-scale sterile neutrino DM via the transition magnetic moment from conversion to active neutrinos ν_{s}→ν_{a}. We report new limits on fermionic dark matter absorption (χ+A→ν+A) and sub-GeV DM-nucleus 3→2 scattering (χ+χ+A→ϕ+A), and new exclusion limits for bosonic dark matter (axionlike particles and dark photons). These searches utilize the (1-100)-keV low-energy region of a 37.5-kg y exposure collected by the Demonstrator between May 2016 and November 2019 using a set of ^{76}Ge-enriched detectors whose surface exposure time was carefully controlled, resulting in extremely low levels of cosmogenic activation.

2.
Phys Rev Lett ; 131(15): 152501, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897780

RESUMEN

^{180m}Ta is a rare nuclear isomer whose decay has never been observed. Its remarkably long lifetime surpasses the half-lives of all other known ß and electron capture decays due to the large K-spin differences and small energy differences between the isomeric and lower-energy states. Detecting its decay presents a significant experimental challenge but could shed light on neutrino-induced nucleosynthesis mechanisms, the nature of dark matter, and K-spin violation. For this study, we repurposed the Majorana Demonstrator, an experimental search for the neutrinoless double-beta decay of ^{76}Ge using an array of high-purity germanium detectors, to search for the decay of ^{180m}Ta. More than 17 kg, the largest amount of tantalum metal ever used for such a search, was installed within the ultralow-background detector array. In this Letter, we present results from the first year of Ta data taking and provide an updated limit for the ^{180m}Ta half-life on the different decay channels. With new limits up to 1.5×10^{19} yr, we improved existing limits by 1-2 orders of magnitude which are the most sensitive searches for a single ß and electron capture decay ever achieved. Over all channels, the decay can be excluded for T_{1/2}<0.29×10^{18} yr.

3.
Phys Rev Lett ; 131(14): 141801, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37862636

RESUMEN

We describe a first measurement of the radiation from a ^{178m}Hf sample to search for dark matter. The γ flux from this sample, possessed by Los Alamos National Laboratory nuclear chemistry, was measured with a Ge detector at a distance of 1.2 m due to its high activity. We search for γ's that cannot arise from the radioactive decay of ^{178m}Hf but might arise from the production of a nuclear state due to the inelastic scattering with dark matter. The limits obtained on this γ flux are then translated into constraints on the parameter space of inelastic dark matter. Finally, we describe the potential reach of future studies with ^{178m}Hf.

5.
Phys Rev Lett ; 130(6): 062501, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827565

RESUMEN

The Majorana Demonstrator searched for neutrinoless double-ß decay (0νßß) of ^{76}Ge using modular arrays of high-purity Ge detectors operated in vacuum cryostats in a low-background shield. The arrays operated with up to 40.4 kg of detectors (27.2 kg enriched to ∼88% in ^{76}Ge). From these measurements, the Demonstrator has accumulated 64.5 kg yr of enriched active exposure. With a world-leading energy resolution of 2.52 keV FWHM at the 2039 keV Q_{ßß} (0.12%), we set a half-life limit of 0νßß in ^{76}Ge at T_{1/2}>8.3×10^{25} yr (90% C.L.). This provides a range of upper limits on m_{ßß} of (113-269) meV (90% C.L.), depending on the choice of nuclear matrix elements.

6.
Phys Rev Lett ; 129(8): 080401, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36053678

RESUMEN

The Majorana Demonstrator neutrinoless double-beta decay experiment comprises a 44 kg (30 kg enriched in ^{76}Ge) array of p-type, point-contact germanium detectors. With its unprecedented energy resolution and ultralow backgrounds, Majorana also searches for rare event signatures from beyond standard model physics in the low energy region below 100 keV. In this Letter, we test the continuous spontaneous localization (CSL) model, one of the mathematically well-motivated wave function collapse models aimed at solving the long-standing unresolved quantum mechanical measurement problem. While the CSL predicts the existence of a detectable radiation signature in the x-ray domain, we find no evidence of such radiation in the 19-100 keV range in a 37.5 kg-y enriched germanium exposure collected between December 31, 2015, and November 27, 2019, with the Demonstrator. We explored both the non-mass-proportional (n-m-p) and the mass-proportional (m-p) versions of the CSL with two different assumptions: that only the quasifree electrons can emit the x-ray radiation and that the nucleus can coherently emit an amplified radiation. In all cases, we set the most stringent upper limit to date for the white CSL model on the collapse rate, λ, providing a factor of 40-100 improvement in sensitivity over comparable searches. Our limit is the most stringent for large parts of the allowed parameter space. If the result is interpreted in terms of the Diòsi-Penrose gravitational wave function collapse model, the lower bound with a 95% confidence level is almost an order of magnitude improvement over the previous best limit.

7.
Phys Rev Lett ; 129(8): 081803, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36053699

RESUMEN

Axions were originally proposed to explain the strong-CP problem in QCD. Through axion-photon coupling, the Sun could be a major source of axions, which could be measured in solid state detection experiments with enhancements due to coherent Primakoff-Bragg scattering. The Majorana Demonstrator experiment has searched for solar axions with a set of ^{76}Ge-enriched high purity germanium detectors using a 33 kg-yr exposure collected between January, 2017 and November, 2019. A temporal-energy analysis gives a new limit on the axion-photon coupling as g_{aγ}<1.45×10^{-9} GeV^{-1} (95% confidence level) for axions with mass up to 100 eV/c^{2}. This improves laboratory-based limits between about 1 eV/c^{2} and 100 eV/c^{2}.

8.
Phys Rev Lett ; 128(23): 232501, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749172

RESUMEN

The Baksan Experiment on Sterile Transitions (BEST) was designed to investigate the deficit of electron neutrinos ν_{e} observed in previous gallium-based radiochemical measurements with high-intensity neutrino sources, commonly referred to as the "gallium anomaly," which could be interpreted as evidence for oscillations between ν_{e} and sterile neutrino (ν_{s}) states. A 3.414-MCi ^{51}Cr ν_{e} source was placed at the center of two nested Ga volumes and measurements were made of the production of ^{71}Ge through the charged current reaction, ^{71}Ga(ν_{e},e^{-})^{71}Ge, at two average distances. The measured production rates for the inner and the outer targets, respectively, are [54.9_{-2.4}^{+2.5}(stat)±1.4(syst)] and [55.6_{-2.6}^{+2.7}(stat)±1.4(syst)] atoms of ^{71}Ge/d. The ratio (R) of the measured rate of ^{71}Ge production at each distance to the expected rate from the known cross section and experimental efficiencies are R_{in}=0.79±0.05 and R_{out}=0.77±0.05. The ratio of the outer to the inner result is 0.97±0.07, which is consistent with unity within uncertainty. The rates at each distance were found to be similar, but 20%-24% lower than expected, thus reaffirming the anomaly. These results are consistent with ν_{e}→ν_{s} oscillations with a relatively large Δm^{2} (>0.5 eV^{2}) and mixing sin^{2}2θ (≈0.4).

9.
Eur Phys J C Part Fields ; 82(3): 226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310515

RESUMEN

P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detector's response to α particles incident on the sensitive passivated and p + surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the Majorana Demonstrator experiment, a search for neutrinoless double-beta decay ( 0 ν ß ß ) in 76 Ge. α decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of α identification, reliably identifying α background events on the passivated surface of the detector. We demonstrate effective rejection of all surface α events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the 0 ν ß ß region of interest window by an order of magnitude in the Majorana Demonstrator  and will be used in the upcoming LEGEND-200 experiment.

10.
Phys Rev Lett ; 120(21): 211804, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883176

RESUMEN

The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in ^{76}Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.

11.
Phys Rev Lett ; 118(16): 161801, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28474933

RESUMEN

We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting g_{Ae}<4.5×10^{-13} for pseudoscalars and (α^{'}/α)<9.7×10^{-28} for vectors. We also report a 14.4 keV solar axion coupling limit of g_{AN}^{eff}×g_{Ae}<3.8×10^{-17}, a 1/2ß^{2}<8.5×10^{-48} limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τ_{e}>1.2×10^{24} yr for e^{-}→ invisible.

12.
Phys Rev Lett ; 112(7): 072501, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24579591

RESUMEN

The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...