Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Auton Neurosci ; 160(1-2): 21-6, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21112817

RESUMEN

We reported pharmacological data suggesting that stimulation of a vago-vagal reflex activates GABAergic neurons in the hindbrain that inhibit dorsal motor nucleus of the vagus (DMV) neurons projecting to the antrum, but not to the fundus (Ferreira et al., 2002). The purpose of this study was to use an ultrastructural approach to test the hypothesis that GABAergic terminals form synapses with DMV antrum-projecting neurons, but not with DMV fundus-projecting neurons. A retrograde tracer, CTB-HRP, was injected into the gastric smooth muscle of either the fundus or the antrum of anesthetized rats. Animals were re-anesthetized 48 h later and perfusion-fixed with acrolein and paraformaldehyde. Brainstems were processed histochemically for CTB-HRP, and immunocytochemically for glutamic acid decarboxylase isoenzyme 67 immunoreactivity (GAD67-IR) by dual-labeling electron microscopic methods. Most cell bodies and dendrites of neurons that were retrogradely labeled from the stomach occurred at the level of the area postrema. Examination of 214 synapses on 195 neurons that projected to the antrum revealed that 23.0+/-3.6% (n = 4) of synaptic contacts were with GAD67-IR terminals. The examination of 220 synapses on 203 fundus-projecting neurons revealed that only 7.9+/-3.1% (n = 4) of synaptic contacts were with GAD67-IR terminals. The difference between GAD67-IR synaptic contacts with antrum- and fundus-projecting neurons was statistically significant (p<0.05). These data suggest that brainstem circuitry controlling the antrum involves GABAergic transmission.


Asunto(s)
Vías Eferentes/metabolismo , Antro Pilórico/inervación , Nervio Vago/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Vías Eferentes/ultraestructura , Glutamato Descarboxilasa/metabolismo , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Antro Pilórico/metabolismo , Ratas , Nervio Vago/ultraestructura
2.
Auton Neurosci ; 136(1-2): 31-42, 2007 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17572158

RESUMEN

We reported pharmacological data suggesting that stimulation of the vago-vagal reflex activates noradrenergic neurons in the hindbrain that inhibit dorsal motor nucleus of the vagus (DMV) neurons projecting to the fundus, but not to the antrum [Ferreira Jr., M., Sahibzada, N., Shi, M., Panico, W., Neidringhaus, M., Wasserman, A., Kellar, K.J., Verbalis, J., Gillis, R.A., 2002. CNS site of action and brainstem circuitry responsible for the intravenous effects of nicotine on gastric tone. J. Neurosci. 22, 2764-2779.]. The purpose of this study was to use an ultrastructural approach to test the hypothesis that noradrenergic terminals form synapses with DMV fundus-projecting neurons, but not with DMV antrum-projecting neurons. A retrograde tracer, CTbeta-HRP, was injected into the gastric smooth muscle of either the fundus or the antrum of rats. Animals were re-anesthetized 48 h later and perfusion-fixed with acrolein and paraformaldehyde. Brainstems were processed histochemically for CTbeta-HRP, and immunocytochemically for either DbetaH or PNMT by dual-labeling electron microscopic methods. Most cell bodies and dendrites of neurons that were retrogradely labeled from the stomach occurred at the level of the area postrema. Examination of 482 synapses on 238 neurons that projected to the fundus revealed that 17.4+/-2.7% (n=4) of synaptic contacts were with DbetaH-IR terminals. Of 165 fundus-projecting neurons, 4.4+/-1.5% (n=4) formed synaptic contacts with PNMT-IR terminals. In contrast, the examination of 384 synapses on 223 antrum-projecting neurons revealed no synaptic contact with DbetaH-IR terminals. These data provide proof that norepinephrine containing nerve terminals synapse with DMV fundus-projecting neurons but not with DMV antrum-projecting neurons. These data also suggest that brainstem circuitry controlling the fundus differs from circuitry controlling the antrum.


Asunto(s)
Fundus Gástrico/inervación , Norepinefrina/metabolismo , Rombencéfalo/ultraestructura , Nervio Vago/ultraestructura , Aferentes Viscerales/ultraestructura , Animales , Área Postrema/fisiología , Área Postrema/ultraestructura , Vías Autónomas/fisiología , Vías Autónomas/ultraestructura , Comunicación Celular/fisiología , Toxina del Cólera , Dendritas/fisiología , Dendritas/ultraestructura , Dopamina beta-Hidroxilasa/análisis , Dopamina beta-Hidroxilasa/metabolismo , Fundus Gástrico/fisiología , Peroxidasa de Rábano Silvestre , Inmunohistoquímica , Masculino , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Feniletanolamina N-Metiltransferasa/análisis , Feniletanolamina N-Metiltransferasa/metabolismo , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Rombencéfalo/fisiología , Sistema Nervioso Simpático/fisiología , Sistema Nervioso Simpático/ultraestructura , Transmisión Sináptica/fisiología , Nervio Vago/fisiología , Aferentes Viscerales/fisiología
3.
Auton Neurosci ; 120(1-2): 52-61, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15996625

RESUMEN

In cat, distinct populations of vagal preganglionic and postganglionic neurons selectively modulate heart rate, atrioventricular conduction and left ventricular contractility, respectively. Vagal preganglionic neurons to the heart originate in the ventrolateral part of nucleus ambiguus and project to postganglionic neurons in intracardiac ganglia, including the sinoatrial (SA), atrioventricular (AV) and cranioventricular (CV) ganglia, which selectively modulate heart rate, AV conduction and left ventricular contractility, respectively. These ganglia receive projections from separate populations of vagal preganglionic neurons. The neurochemical anatomy and synaptic interactions of afferent neurons which mediate central control of these preganglionic neurons is incompletely understood. Enkephalins cause bradycardia when microinjected into nucleus ambiguus. It is not known if this effect is mediated by direct synapses of enkephalinergic terminals upon vagal preganglionic neurons to the heart. The effects of opioids in nucleus ambiguus upon AV conduction and cardiac contractility have also not been studied. We have tested the hypothesis that enkephalinergic nerve terminals synapse upon vagal preganglionic neurons projecting to the SA, AV and CV ganglia. Electron microscopy was used combining retrograde labeling from the SA, AV or CV ganglion with immunocytochemistry for enkephalins in ventrolateral nucleus ambiguus. Eight percent of axodendritic synapses upon negative chronotropic, and 12% of axodendritic synapses upon negative dromotropic vagal preganglionic neurons were enkephalinergic. Enkephalinergic axodendritic synapses were also present upon negative inotropic vagal preganglionic neurons. Thus enkephalinergic terminals in ventrolateral nucleus ambiguus can modulate not only heart rate but also atrioventricular conduction and left ventricular contractility by directly synapsing upon cardioinhibitory vagal preganglionic neurons.


Asunto(s)
Nodo Atrioventricular/inervación , Fibras Autónomas Preganglionares/metabolismo , Encefalinas/metabolismo , Nervio Vago/citología , Nervio Vago/metabolismo , Animales , Nodo Atrioventricular/fisiología , Fibras Autónomas Preganglionares/ultraestructura , Axones/metabolismo , Axones/ultraestructura , Gatos , Dendritas/metabolismo , Dendritas/ultraestructura , Femenino , Ganglios Parasimpáticos/citología , Ganglios Parasimpáticos/metabolismo , Microscopía Electrónica , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura
4.
J Appl Physiol (1985) ; 98(6): 1961-82, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15894534

RESUMEN

This review summarizes recent work on two basic processes of central nervous system (CNS) control of cholinergic outflow to the airways: 1) transmission of bronchoconstrictive signals from the airways to the airway-related vagal preganglionic neurons (AVPNs) and 2) regulation of AVPN responses to excitatory inputs by central GABAergic inhibitory pathways. In addition, the autocrine-paracrine modulation of AVPNs is briefly discussed. CNS influences on the tracheobronchopulmonary system are transmitted via AVPNs, whose discharge depends on the balance between excitatory and inhibitory impulses that they receive. Alterations in this equilibrium may lead to dramatic functional changes. Recent findings indicate that excitatory signals arising from bronchopulmonary afferents and/or the peripheral chemosensory system activate second-order neurons within the nucleus of the solitary tract (NTS), via a glutamate-AMPA signaling pathway. These neurons, using the same neurotransmitter-receptor unit, transmit information to the AVPNs, which in turn convey the central command to airway effector organs: smooth muscle, submucosal secretory glands, and the vasculature, through intramural ganglionic neurons. The strength and duration of reflex-induced bronchoconstriction is modulated by GABAergic-inhibitory inputs and autocrine-paracrine controlling mechanisms. Downregulation of GABAergic inhibitory influences may result in a shift from inhibitory to excitatory drive that may lead to increased excitability of AVPNs, heightened airway responsiveness, and sustained narrowing of the airways. Hence a better understanding of these normal and altered central neural circuits and mechanisms could potentially improve the design of therapeutic interventions and the treatment of airway obstructive diseases.


Asunto(s)
Tronco Encefálico/fisiología , Broncoconstricción/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Reflejo/fisiología , Transmisión Sináptica/fisiología , Animales , Retroalimentación/fisiología , Humanos , Modelos Neurológicos , Neurotransmisores/metabolismo
5.
J Appl Physiol (1985) ; 96(6): 2265-72, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-14978002

RESUMEN

The locations, projections, and functions of the intracardiac ganglia are incompletely understood. Immunocytochemical labeling with the general neuronal marker protein gene product 9.5 (PGP 9.5) was used to determine the distribution of intracardiac neurons throughout the cat atria and ventricles. Fluorescence microscopy was used to determine the number of neurons within these ganglia. There are eight regions of the cat heart that contain intracardiac ganglia. The numbers of neurons found within these intracardiac ganglia vary dramatically. The total number of neurons found in the heart (6,274 +/- 1,061) is almost evenly divided between the atria and the ventricles. The largest ganglion is found in the interventricular septum (IVS). Retrogradely labeled fluorescent tracer studies indicated that the vagal intracardiac innervation of the anterior surface of the right ventricle originates predominantly in the IVS ganglion. A cranioventricular (CV) ganglion was retrogradely labeled from the anterior surface of the left ventricle but not from the anterior surface of the right ventricle. These new neuroanatomic data support the prior physiological hypothesis that the CV ganglion in the cat exerts a negative inotropic effect on the left ventricle. A total of three separate intracardiac ganglia innervate the left ventricle, i.e., the CV, IVS, and a second left ventricular (LV2) ganglion. However, the IVS ganglion provides the major source of innervation to both the left and right ventricles. This dual innervation pattern may help to coordinate or segregate vagal effects on left and right ventricular performance.


Asunto(s)
Ganglios Parasimpáticos/fisiología , Sistema de Conducción Cardíaco/fisiología , Corazón/inervación , Nervio Vago/fisiología , Animales , Transporte Axonal , Gatos , Corazón/anatomía & histología , Atrios Cardíacos/anatomía & histología , Atrios Cardíacos/inervación , Ventrículos Cardíacos/anatomía & histología , Ventrículos Cardíacos/inervación , Modelos Animales
6.
J Appl Physiol (1985) ; 96(6): 2273-8, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-14978001

RESUMEN

Intracardiac pathways mediating the parasympathetic control of various cardiac functions are incompletely understood. Several intracardiac ganglia have been demonstrated to potently influence cardiac rate [the sinoatrial (SA) ganglion], atrioventricular (AV) conduction (the AV ganglion), or left ventricular contractility (the cranioventricular ganglion). However, there are numerous ganglia found throughout the heart whose functions are poorly characterized. One such ganglion, the posterior atrial (PA) ganglion, is found in a fat pad on the rostral dorsal surface of the right atrium. We have investigated the potential impact of this ganglion on cardiac rate and AV conduction. We report that microinjections of a ganglionic blocker into the PA ganglion significantly attenuates the negative chronotropic effects of vagal stimulation without significantly influencing negative dromotropic effects. Because prior evidence indicates that the PA ganglion does not project to the SA node, we neuroanatomically tested the hypothesis that the PA ganglion mediates its effect on cardiac rate through an interganglionic projection to the SA ganglion. Subsequent to microinjections of the retrograde tracer fast blue into the SA ganglion, >70% of the retrogradely labeled neurons found within five intracardiac ganglia throughout the heart were observed in the PA ganglion. The neuroanatomic data further indicate that intraganglionic neuronal circuits are found within the SA ganglion. The present data support the hypothesis that two interacting cardiac centers, i.e., the SA and PA ganglia, mediate the peripheral parasympathetic control of cardiac rate. These data further support the emerging concept of an intrinsic cardiac nervous system.


Asunto(s)
Ganglios Parasimpáticos/fisiología , Sistema de Conducción Cardíaco/fisiología , Frecuencia Cardíaca/fisiología , Corazón/inervación , Corazón/fisiología , Contracción Miocárdica/fisiología , Animales , Transporte Axonal , Gatos , Electrocardiografía , Homeostasis , Modelos Animales
7.
J Appl Physiol (1985) ; 96(6): 2279-87, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-14978003

RESUMEN

The vagal postganglionic control of cardiac rate is mediated by two intracardiac ganglia, i.e., the sinoatrial (SA) and posterior atrial (PA) ganglia. Nothing is known about the vagal preganglionic neurons (VPNs) that innervate the PA ganglion or about the neurochemical anatomy of central afferents that innervate these VPNs. These issues were examined using light microscopic retrograde labeling methods and dual-labeling electron microscopic histochemical and immunocytochemical methods. VPNs projecting to the PA ganglion are found in a narrow column exclusively in the ventrolateral nucleus ambiguus (NA-VL). These neurons are relatively large (37.6 +/- 2.7 microm by 21.3 +/- 3.4 microm) with abundant cytoplasm and intracellular organelles, rare somatic and dendritic spines, round uninvaginated nuclei, and myelinated axons. Previous physiological data indicated that microinjections of neuropeptide Y (NPY) into the NA-VL cause negative chronotropic effects. The present morphological data demonstrate that NPY-immunoreactive nerve terminals formed 18 +/- 4% of the axodendritic or axosomatic synapses and close appositions on VPNs projecting to the PA ganglion. Three approximately equal populations of VPNs in the NA-VL were retrogradely labeled from the SA and PA ganglia. One population each projects to the SA ganglion, the PA ganglion, or to both the SA and PA ganglia. Therefore, there are both shared and independent pathways involved in the vagal preganglionic controls of cardiac rate. These data are consistent with the hypothesis that the central and peripheral parasympathetic controls of cardiac rate are coordinated by multiple potentially redundant and/or interacting pathways and mechanisms.


Asunto(s)
Ganglios Parasimpáticos/fisiología , Frecuencia Cardíaca/fisiología , Corazón/inervación , Terminaciones Nerviosas/fisiología , Neuropéptido Y/análisis , Sinapsis/fisiología , Nervio Vago/fisiología , Animales , Transporte Axonal/fisiología , Gatos , Ganglios Parasimpáticos/citología , Microscopía Fluorescente , Modelos Animales , Terminaciones Nerviosas/ultraestructura , Sinapsis/ultraestructura
8.
J Appl Physiol (1985) ; 96(1): 260-70, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12972437

RESUMEN

GABA is the main inhibitory neurotransmitter that participates in the regulation of cholinergic outflow to the airways. We have tested the hypothesis that a monosynaptic GABAergic circuit modulates the output of airway-related vagal preganglionic neurons (AVPNs) in the rostral nucleus ambiguus by using a dual-labeling electron microscopic method combining immunocytochemistry for glutamic acid decarboxylase (GAD) with retrograde tracing from the trachea. We also determined the effects of blockade of GABAA receptors on airway smooth muscle tone. The results showed that retrogradely labeled AVPNs received a significant GAD-immunoreactive (GAD-IR) terminal input. Out of a pooled total of 3,161 synaptic contacts with retrogradely labeled somatic and dendritic profiles, 20.2% were GAD-IR. GAD-IR terminals formed significantly more axosomatic synapses than axodendritic synapses (P < 0.02). A dense population of GABAergic synaptic contacts on AVPNs provides a morphological basis for potent physiological effects of GABA on the excitability of AVPNs. GAD-IR terminals formed exclusively symmetric synaptic specializations. GAD-IR terminals were significantly larger (P < 0.05) in both length and width than unlabeled terminals synapsing on AVPNs. Therefore, the structural characteristics of certain nerve terminals may be closely correlated with their function. Pharmacological blockade of GABAA receptors within the rostral nucleus ambiguus increased activity of putative AVPNs and airway smooth muscle tone. We conclude that a tonically active monosynaptic GABAergic circuit utilizing symmetric synapses regulates the discharge of AVPNs.


Asunto(s)
Fibras Autónomas Preganglionares/fisiología , Inhibición Neural/fisiología , Tráquea/inervación , Nervio Vago/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Fibras Autónomas Preganglionares/ultraestructura , Fibras Colinérgicas/fisiología , Fibras Colinérgicas/ultraestructura , Electrofisiología , Hurones , Masculino , Bulbo Raquídeo/fisiología , Microscopía Electrónica , Músculo Liso/inervación , Músculo Liso/fisiología , Receptores de GABA-A/fisiología , Nervio Laríngeo Recurrente/fisiología , Tráquea/fisiología
9.
J Appl Physiol (1985) ; 94(5): 1999-2009, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12514167

RESUMEN

In this study, we have investigated the ultrastructure and function of the catecholaminergic circuitry modulating the output of airway-related vagal preganglionic neurons (AVPNs) in ferrets. Immunoelectron microscopy was employed to characterize the nature of catecholaminergic innervation of AVPN at the ultrastructural level. In addition, immunofluorescence was used to examine the expression of the alpha(2A)-adrenergic receptor (alpha(2A)-AR) on AVPNs, and norepinephrine release within the rostral nucleus ambiguous (rNA) was measured by using microdialysis. Physiological experiments were performed to determine the effects of stimulation of the noradrenergic locus coeruleus (LC) cell group on airway smooth muscle tone. The results showed that 1) catecholaminergic nerve endings terminate in the vicinity of identified AVPNs but very rarely form axosomatic or axodendritic synapses with the AVPNs that innervate the extrathoracic trachea; 2) AVPNs express the alpha(2A)-AR; 3) LC stimulation-induced norepinephrine release within the rNA region was associated with airway smooth muscle relaxation; and 4) blockade of alpha(2A)-AR on AVPNs diminished the inhibitory effects of LC stimulation on airway smooth muscle tone. It is concluded that a noradrenergic circuit originating within the LC is involved in the regulation of AVPN activity within the rNA, and stimulation of the LC dilates the airways by the release of norepinephrine and activation of alpha(2A)-AR expressed by AVPNs, mainly via volume transmission.


Asunto(s)
Fibras Autónomas Preganglionares/fisiología , Catecolaminas/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Sistema Respiratorio/inervación , Nervio Vago/fisiología , Animales , Fibras Autónomas Preganglionares/ultraestructura , Cromatografía Líquida de Alta Presión , Hurones , Peroxidasa de Rábano Silvestre , Inmunohistoquímica , Masculino , Microdiálisis , Microscopía Electrónica , Microscopía Fluorescente , Relajación Muscular , Músculo Liso/inervación , Músculo Liso/fisiología , Norepinefrina/metabolismo , Norepinefrina/fisiología , Receptores Adrenérgicos alfa 2/metabolismo , Nervio Vago/ultraestructura
10.
Auton Neurosci ; 96(2): 103-12, 2002 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-11958475

RESUMEN

Airway disorders, such as asthma and chronic obstructive bronchitis, are, in part, due to abnormalities in the nervous control of the airways. However, the ultrastructural circuitry and neurochemical anatomy of afferents modulating the output of airway-related vagal preganglionic neurons (VPNs) in the nucleus ambiguus are poorly understood. We have examined the potential role of substance P (SP) immunoreactive afferents in the regulation of anatomically identified airway VPNs. Cholera toxin b-subunit conjugated to horseradish peroxidase was used as a retrograde cell body tracer to identify the central VPNs innervating the extra-thoracic trachea. Immunocytochemistry was employed to identify SP afferents. The external formation of the nucleus ambiguus was examined by electron microscopy using a simultaneous double labeling method. Cell bodies of tracheal VPNs were 31.7 +/- 1.18 x 23.0 +/- 1.3 microm (means +/- S.E.M.) in size, contained abundant endoplasmic reticulum, had a round nucleus with a prominent nucleolus, no satellite body and displayed somatic and dendritic spines. Somato-somatic appositions, somato-dendritic appositions without intervening glial processes and dendritic "bundling" commonly seen in esophageal motoneurons were not observed. The ultrastructural morphology of tracheal VPNs were also clearly distinguishable from pharyngeal and laryngeal motoneurons in other divisions of the nucleus ambiguus which lack somatic spines. These data are consistent with the hypothesis that differences in the ultrastructure and synaptology of the different divisions of the nucleus ambiguus may be associated with specific physiological functions. The mean size (+/- S.E.M.) of SP nerve terminals was 1.57 +/- 0.06 x 0.79 +/- 0.03 microm. SP terminals formed 17.5% of the axo-dendritic and 15.9% of the axo-somatic synapses which were observed upon retrogradely labeled tracheal VPNs. Synaptic contacts observed were both symmetric and asymmetric. These synaptic interactions define, in part, the neurochemical anatomy of neuronal circuits modulating vagal preganglionic control of tracheal functions.


Asunto(s)
Ganglios/fisiología , Terminaciones Nerviosas/fisiología , Sustancia P/fisiología , Transmisión Sináptica/fisiología , Tráquea/inervación , Nervio Vago/fisiología , Vías Aferentes/fisiología , Vías Aferentes/ultraestructura , Animales , Hurones , Ganglios/ultraestructura , Masculino , Microscopía Electrónica , Terminaciones Nerviosas/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructura , Nervio Vago/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...