Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Gen Physiol ; 154(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36149386

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are enriched at postsynaptic membrane compartments of the neuromuscular junction (NMJ), surrounding the subsynaptic nuclei and close to nicotinic acetylcholine receptors (nAChRs) of the motor endplate. At the endplate level, it has been proposed that nerve-dependent electrical activity might trigger IP3-associated, local Ca2+ signals not only involved in excitation-transcription (ET) coupling but also crucial to the development and stabilization of the NMJ itself. The present study was undertaken to examine whether denervation affects the subsynaptic IP3R distribution in skeletal muscles and which are the underlying mechanisms. Fluorescence microscopy, carried out on in vivo denervated muscles (following sciatectomy) and in vitro denervated skeletal muscle fibers from flexor digitorum brevis (FDB), indicates that denervation causes a reduction in the subsynaptic IP3R1-stained region, and such a decrease appears to be determined by the lack of muscle electrical activity, as judged by partial reversal upon field electrical stimulation of in vitro denervated skeletal muscle fibers.


Asunto(s)
Calcio , Receptores Nicotínicos , Calcio/metabolismo , Inositol , Receptores de Inositol 1,4,5-Trifosfato , Músculo Esquelético/metabolismo , Unión Neuromuscular
2.
Biochem Biophys Res Commun ; 623: 148-153, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914353

RESUMEN

It has long been known that regular physical exercise induces short and long term benefits reducing the risk of cardiovascular disease, diabetes, osteoporosis, cancer and improves sleep quality, cognitive level, mobility, autonomy in enderly. More recent is the evidence on the endocrine role of the contracting skeletal muscle. Exercise triggers the release of miokines, which act in autocrine, paracrine and endocrine ways controlling the activity of muscles but also of other tissues and organs such as adipose tissue, liver, pancreas, bones, and brain. The mechanism of release is still unclear. Neuromuscular electrical stimulation reproduces the beneficial effects of physical activity producing physiological metabolic, cardiovascular, aerobic responses consistent with those induced by exercise. In vitro, Electrical Pulse Stimulations (EPS) of muscle cells elicit cell contraction and mimic miokine release in the external medium. Here we show that, in cultured mouse myotubes, EPS induce contractile activity and the release of the myokine IL-6. Gadolinium highly reduces EPS-induced IL-6 release, suggesting the involvement of mechanical activated ion channels. The chemical activation of mechanosensitive Piezo1 channels with the specific agonist Yoda1 stimulates IL-6 release similarly to EPS, suggesting the involvement of Piezo1 channels in the control of the myokine release. The expression of Piezo1 protein in myotubes was confirmed by the Western blot analysis. To the best of our knowledge, this is the first evidence of a Piezo1-mediated effect in myokine release and suggests a potential translational use of specific Piezo1 agonists for innovative therapeutic treatments reproducing/enhancing the benefits of exercise mediated by myokines.


Asunto(s)
Interleucina-6/metabolismo , Canales Iónicos/metabolismo , Fibras Musculares Esqueléticas , Animales , Estimulación Eléctrica , Ratones , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
3.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743058

RESUMEN

Piezo1 channels are highly mechanically-activated cation channels that can sense and transduce the mechanical stimuli into physiological signals in different tissues including skeletal muscle. In this focused review, we summarize the emerging evidence of Piezo1 channel-mediated effects in the physiology of skeletal muscle, with a particular focus on the role of Piezo1 in controlling myogenic precursor activity and skeletal muscle regeneration and vascularization. The disclosed effects reported by pharmacological activation of Piezo1 channels with the selective agonist Yoda1 indicate a potential impact of Piezo1 channel activity in skeletal muscle regeneration, which is disrupted in various muscular pathological states. All findings reported so far agree with the idea that Piezo1 channels represent a novel, powerful molecular target to develop new therapeutic strategies for preventing or ameliorating skeletal muscle disorders characterized by an impairment of tissue regenerative potential.


Asunto(s)
Canales Iónicos , Mecanotransducción Celular , Transporte Biológico , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Desarrollo de Músculos , Músculo Esquelético/metabolismo
4.
Metabolites ; 11(9)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34564458

RESUMEN

Homer represents a diversified family of scaffold and transduction proteins made up of several isoforms. Here, we present preliminary observations on skeletal muscle adaptation and plasticity in a transgenic model of Homer 2-/- mouse using a multifaceted approach entailing morphometry, quantitative RT-PCR (Reverse Transcription PCR), confocal immunofluorescence, and electrophysiology. Morphometry shows that Soleus muscle (SOL), at variance with Extensor digitorum longus muscle (EDL) and Flexor digitorum brevis muscle (FDB), displays sizable reduction of fibre cross-sectional area compared to the WT counterparts. In SOL of Homer 2-/- mice, quantitative RT-PCR indicated the upregulation of Atrogin-1 and Muscle ring finger protein 1 (MuRF1) genes, and confocal immunofluorescence showed the decrease of neuromuscular junction (NMJ) Homer content. Electrophysiological measurements of isolated FDB fibres from Homer 2-/- mice detected the exclusive presence of the adult ε-nAChR isoform excluding denervation. As for NMJ morphology, data were not conclusive, and further work is needed to ascertain whether the null Homer 2 phenotype induces any endplate remodelling. Within the context of adaptation and plasticity, the present data show that Homer 2 is a co-regulator of the normotrophic status in a muscle specific fashion.

5.
Exp Cell Res ; 381(1): 121-128, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31082374

RESUMEN

An in vitro system of electrical stimulation was used to explore whether an innovative "noisy" stimulation protocol derived from human electromyographic recordings (EMGstim) could promote muscle regeneration. EMGstim was delivered to cultured mouse myofibers isolated from Flexor Digitorum Brevis, preserving their satellite cells. In response to EMGstim, immunostaining for the myogenic regulatory factor myogenin, revealed an increased percentage of elongated myogenin-positive cells surrounding the myofibers. Conditioned medium collected from EMGstim-treated cell cultures, promoted satellite cells differentiation in unstimulated myofiber cell cultures, suggesting that extracellular soluble factors could mediate the process. Interestingly, the myogenic effect of EMGstim was mimicked by exogenously applied ATP (0.1 µM), reduced by the ATP diphosphohydrolase apyrase and prevented by blocking endogenous ATP release with carbenoxolone. In conclusion, our results show that "noisy" electrical stimulations favor muscle progenitor cell differentiation most likely via the release of endogenous ATP from contracting myofibres. Our data also suggest that "noisy" stimulation protocols could be potentially more efficient than regular stimulations to promote in vivo muscle regeneration after traumatic injury or in neuropathological diseases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Fibras Musculares Esqueléticas/fisiología , Regeneración , Animales , Estimulación Eléctrica , Electromiografía , Masculino , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos , Mioblastos Esqueléticos/fisiología , Miogenina/metabolismo , Factor de Transcripción PAX7/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA