Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Child Abuse Negl ; 134: 105932, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36279590

RESUMEN

BACKGROUND: It is well supported that engaging in prevention education increases a child's awareness of child sexual abuse. However, due to methodological limitations, prior research has yet to determine whether this knowledge leads to increases in reporting or substantiation of child sexual abuse. OBJECTIVE: We examined whether state mandates for school-based prevention education correlate to changes in reports of child sexual abuse. METHODS: We used a quasi-experimental design to investigate the association between child sexual abuse report rates from 2005 to 2019 and presence of state legislation mandating school-based child sexual abuse prevention curricula. Child sexual abuse report data were obtained from the National Child Abuse and Neglect Data System child files. We focused on reports for school-aged children ages 5-17. Data on state laws on prevention curricula were extracted from enoughabuse.org, Prevent Child Abuse America, ErinsLaw.org, and directly from published legislation. RESULTS: State education mandates were associated with an increase in the incidence of child sexual abuse reports made by education personnel (IRR = 1.22, 95 % CI, 1.01-1.48). Policies were not associated with increases in incidence of child sexual abuse reports made by non-education personnel (IRR = 1.08, 95 % CI, 0.95-1.22) or decreases in likelihood that any given report was confirmed (OR = 1.00; 95 % CI, 0.90-1.12). CONCLUSIONS: There is moderate evidence that adopting state mandates for child sexual abuse prevention education may increase disclosures and reporting of child sexual abuse by school-based sources. There is no evidence that mandates decrease the validity of child sexual abuse reporting by school-based sources.


Asunto(s)
Abuso Sexual Infantil , Maltrato a los Niños , Niño , Humanos , Preescolar , Adolescente , Abuso Sexual Infantil/prevención & control , Maltrato a los Niños/prevención & control , Instituciones Académicas , Familia , Políticas
2.
Am J Physiol Renal Physiol ; 322(4): F449-F459, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129370

RESUMEN

PERIOD 1 (PER1) is a circadian clock transcription factor that is regulated by aldosterone, a hormone that increases blood volume and Na+ retention to increase blood pressure. Male global Per1 knockout (KO) mice develop reduced night/day differences in Na+ excretion in response to a high-salt diet plus desoxycorticosterone pivalate treatment (HS + DOCP), a model of salt-sensitive hypertension. In addition, global Per1 KO mice exhibit higher aldosterone levels on a normal-salt diet. To determine the role of Per1 in the kidney, male kidney-specific Per1 KO (KS-Per1 KO) mice were generated using Ksp-cadherin Cre recombinase to remove exons 2-8 of Per1 in the distal nephron and collecting duct. Male KS-Per1 KO mice have increased Na+ retention but have normal diurnal differences in Na+ excretion in response to HS + DOCP. The increased Na+ retention is associated with altered expression of glucocorticoid and mineralocorticoid receptors, increased serum aldosterone, and increased medullary endothelin-1 compared with control mice. Adrenal gland gene expression analysis revealed that circadian clock and aldosterone synthesis genes have altered expression in KS-Per1 KO mice compared with control mice. These results emphasize the importance of the circadian clock not only in maintaining rhythms of physiological functions but also for adaptability in response to environmental cues, such as HS + DOCP, to maintain overall homeostasis. Given the prevalence of salt-sensitive hypertension in the general population, these findings have important implications for our understanding of how circadian clock proteins regulate homeostasis.NEW & NOTEWORTHY For the first time, we show that knockout of the circadian clock transcription factor PERIOD 1 using kidney-specific cadherin Cre results in increased renal Na+ reabsorption, increased aldosterone levels, and changes in gene expression in both the kidney and adrenal gland. Diurnal changes in renal Na+ excretion were not observed, demonstrating that the clock protein PER1 in the kidney is important for maintaining homeostasis and that this effect may be independent of time of day.


Asunto(s)
Aldosterona , Relojes Circadianos , Hipertensión , Riñón , Proteínas Circadianas Period , Aldosterona/sangre , Animales , Cadherinas/metabolismo , Relojes Circadianos/genética , Expresión Génica , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo
3.
Biomolecules ; 12(2)2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35204763

RESUMEN

BMAL1 is a core mammalian circadian clock transcription factor responsible for the regulation of the expression of thousands of genes. Previously, male skeletal-muscle-specific BMAL1-inducible-knockout (iMS-BMAL1 KO) mice have been described as a model that exhibits an aging-like phenotype with an altered gait, reduced mobility, muscle weakness, and impaired glucose uptake. Given this aging phenotype and that chronic kidney disease is a disease of aging, the goal of this study was to determine if iMS-BMAL1 KO mice exhibit a renal phenotype. Male iMS-BMAL1 KO and control mice were challenged with a low potassium diet for five days. Both genotypes responded appropriately by conserving urinary potassium. The iMS-BMAL1 KO mice excreted less potassium during the rest phase during the normal diet but there was no genotype difference during the active phase. Next, iMS-BMAL1 KO and control mice were used to compare markers of kidney injury and assess renal function before and after a phase advance protocol. Following phase advance, no differences were detected in renal mitochondrial function in iMS-BMAL1 KO mice compared to control mice. Additionally, the glomerular filtration rate and renal morphology were similar between groups in response to phase advance. Disruption of the clock in skeletal muscle tissue activates inflammatory pathways within the kidney of male mice, and there is evidence of this affecting other organs, such as the lungs. However, there were no signs of renal injury or altered function following clock disruption of skeletal muscle under the conditions tested.


Asunto(s)
Factores de Transcripción ARNTL , Relojes Circadianos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo
4.
Can J Physiol Pharmacol ; 98(9): 579-586, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32437627

RESUMEN

Previously, we showed that global knockout (KO) of the circadian clock transcription factor PER1 in male, but not female, mice fed a high-salt diet plus mineralocorticoid treatment (HS/DOCP) resulted in nondipping hypertension and decreased night/day ratio of sodium (Na) excretion. Additionally, we have shown that the endothelin-1 (ET-1) gene is targeted by both PER1 and aldosterone. We hypothesized that ET-1 would exhibit a sex-specific response to HS/DOCP treatment in PER1 KO. Here we show that male, but not female, global PER1 KO mice exhibit a decreased night/day ratio of urinary ET-1. Gene expression analysis revealed significant genotype differences in ET-1 and endothelin A receptor (ETA) expression in male, but not female, mice in response to HS/DOCP. Additionally, both wild-type and global PER1 KO male mice significantly increase endothelin B receptor (ETB) expression in response to HS/DOCP, but female mice do not. Finally, siRNA-mediated knockdown of PER1 in mouse cortical collecting duct cells (mpkCCDc14) resulted in increased ET-1 mRNA expression and peptide secretion in response to aldosterone treatment. These data suggest that PER1 is a negative regulator of ET-1 expression in response to HS/DOCP, revealing a novel mechanism for the regulation of renal Na handling in response to HS/DOCP treatment.


Asunto(s)
Endotelina-1/metabolismo , Hipertensión/metabolismo , Túbulos Renales Colectores/fisiopatología , Proteínas Circadianas Period/metabolismo , Eliminación Renal/fisiología , Aldosterona/administración & dosificación , Aldosterona/efectos adversos , Animales , Relojes Circadianos/fisiología , Modelos Animales de Enfermedad , Endotelina-1/orina , Femenino , Humanos , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Eliminación Renal/efectos de los fármacos , Factores Sexuales , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/metabolismo
5.
Front Physiol ; 11: 209, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231591

RESUMEN

Endothelin-1 (ET-1) is a peptide hormone that functions as a vasoconstrictor in the vasculature, whereas in the collecting duct of the kidney it exerts blood pressure-lowering effects via natriuretic actions. Aberrant ET-1 signaling is associated with several pathological states including hypertension and chronic kidney disease. ET-1 expression is regulated largely through transcriptional control of the gene that encodes ET-1, EDN1. Here we report a long, non-coding RNA (lncRNA) that appears to be antisense to the EDN1 gene, called EDN1-AS. Because EDN1-AS represents a potential novel mechanism to regulate ET-1 expression, we examined the regulation of EDN1-AS expression and action. A putative glucocorticoid receptor response (GR) element upstream of the predicted EDN1-AS transcription start site was identified using the ENCODE database and the UCSC genome browser. Two homozygous deletion clones of the element were generated using CRISPR/Cas9. This deletion resulted in a significant increase in the expression of EDN1-AS, which was associated with increased secretion of ET-1 peptide from HK-2 cells (two-fold increase in KO cells vs. CNTL, n = 7, P < 0.05). Phenotypic characterization of these CRISPR clones revealed a difference in cell growth rates. Using a standard growth assay, we determined that the KO1 clone exhibited a three-fold increase in growth over 8 days compared to control cells (n = 4, P < 0.01) and the KO2 clone exhibited a two-fold increase (n = 4, P < 0.01). These results support a role for EDN1-AS as a novel regulatory mechanism of ET-1 expression and cellular proliferation.

6.
Am J Physiol Renal Physiol ; 318(6): F1463-F1477, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32338037

RESUMEN

The renal circadian clock has a major influence on the function of the kidney. Aryl hydrocarbon receptor nuclear translocator-like protein 1 [ARNTL; also known as brain and muscle ARNT-like 1 (BMAL1)] is a core clock protein and transcription factor that regulates the expression of nearly half of all genes. Using male and female kidney-specific cadherin BMAL1 knockout (KS-BMAL1 KO) mice, we examined the role of renal distal segment BMAL1 in blood pressure control and solute handling. We confirmed that this mouse model does not express BMAL1 in thick ascending limb, distal convoluted tubule, and collecting duct cells, which are the final locations for solute and fluid regulation. Male KS-BMAL1 KO mice displayed a substantially lower basal systolic blood pressure compared with littermate control mice, yet their circadian rhythm in pressure remained unchanged [male control mice: 127 ± 0.7 mmHg (n = 4) vs. male KS-BMAL KO mice: 119 ± 2.3 mmHg (n = 5), P < 0.05]. Female mice, however, did not display a genotype difference in basal systolic blood pressure [female control mice: 120 ± 1.6 mmHg (n = 5) vs. female KS-BMAL1 KO mice: 119 ± 1.5 mmHg (n = 7), P = 0.4]. In addition, male KS-BMAL1 KO mice had less Na+ retention compared with control mice in response to a K+-restricted diet (15% less following 5 days of treatment). However, there was no genotype difference in Na+ handling after a K+-restricted diet in female mice. Furthermore, there was evidence indicating a sex-specific response to K+ restriction where female mice reabsorbed less Na+ in response to this dietary challenge compared with male mice. We propose that BMAL1 in the distal nephron and collecting duct contributes to blood pressure regulation and Na+ handling in a sex-specific manner.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Presión Sanguínea , Ritmo Circadiano , Nefronas/metabolismo , Reabsorción Renal , Sodio/metabolismo , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Animales , Femenino , Genotipo , Homeostasis , Túbulos Renales Colectores/metabolismo , Masculino , Ratones Noqueados , Fenotipo , Potasio en la Dieta/metabolismo , Factores Sexuales , Factores de Tiempo
7.
Curr Diab Rep ; 19(7): 42, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31168658

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to provide a brief summary about the current state of knowledge regarding the circadian rhythm in the regulation of normal renal function. RECENT FINDINGS: There is a lack of information regarding how the circadian clock mechanisms may contribute to the development of diabetic kidney disease. We discuss recent findings regarding mechanisms that are established in diabetic kidney disease and are known to be linked to the circadian clock as possible connections between these two areas. Here, we hypothesize various mechanisms that may provide a link between the clock mechanism and kidney disease in diabetes based on available data from humans and rodent models.


Asunto(s)
Relojes Circadianos , Diabetes Mellitus , Nefropatías Diabéticas , Ritmo Circadiano , Humanos , Riñón
8.
Am J Physiol Regul Integr Comp Physiol ; 316(1): R50-R58, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427705

RESUMEN

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Hipertensión/genética , Proteínas Circadianas Period/deficiencia , Animales , Presión Sanguínea/fisiología , Ritmo Circadiano/fisiología , Femenino , Hipertensión/fisiopatología , Ratones Endogámicos C57BL , Mineralocorticoides , Proteínas Circadianas Period/genética , Cloruro de Sodio Dietético/metabolismo
9.
Am J Physiol Renal Physiol ; 314(6): F1138-F1144, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357420

RESUMEN

Many physiological functions have a circadian rhythm, including blood pressure (BP). BP is highest during the active phase, whereas during the rest period, BP dips 10-20%. Patients that do not experience this dip at night are termed "nondippers." Nondipping hypertension is associated with increased risk of cardiovascular disease. The mechanisms underlying nondipping hypertension are not understood. Without the circadian clock gene Per1, C57BL/6J mice develop nondipping hypertension on a high-salt diet plus mineralocorticoid treatment (HS/DOCP). Our laboratory has shown that PER1 regulates expression of several genes related to sodium (Na) transport in the kidney, including epithelial Na channel (ENaC) and Na chloride cotransporter (NCC). Urinary Na excretion also demonstrates a circadian pattern with a peak during active periods. We hypothesized that PER1 contributes to circadian regulation of BP via a renal Na-handling-dependent mechanism. Na-handling genes from the distal nephron were inappropriately regulated in KO mice on HS/DOCP. Additionally, the night/day ratio of Na urinary excretion by Per1 KO mice is decreased compared with WT (4 × vs. 7×, P < 0.001, n = 6 per group). Distal nephron-specific Per1 KO mice also show an inappropriate increase in expression of Na transporter genes αENaC and NCC. These results support the hypothesis that PER1 mediates control of circadian BP rhythms via the regulation of distal nephron Na transport genes. These findings have implications for the understanding of the etiology of nondipping hypertension and the subsequent development of novel therapies for this dangerous pathophysiological condition.


Asunto(s)
Presión Sanguínea , Ritmo Circadiano , Hipertensión/metabolismo , Túbulos Renales Distales/metabolismo , Natriuresis , Proteínas Circadianas Period/metabolismo , Eliminación Renal , Animales , Presión Sanguínea/genética , Ritmo Circadiano/genética , Acetato de Desoxicorticosterona , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Predisposición Genética a la Enfermedad , Hipertensión/genética , Hipertensión/fisiopatología , Túbulos Renales Distales/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Natriuresis/genética , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Fenotipo , Eliminación Renal/genética , Cloruro de Sodio Dietético , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Factores de Tiempo , Regulación hacia Arriba
10.
Curr Opin Physiol ; 5: 38-44, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30714020

RESUMEN

Accumulating evidence suggests a critical role for the molecular circadian clock in the regulation of renal function. Here, we consider the most recent advances in our understanding of the relationship between the circadian clock and renal physiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA