Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960385

RESUMEN

The occurrence of tomato diseases has substantially reduced agricultural output and financial losses. The timely detection of diseases is crucial to effectively manage and mitigate the impact of episodes. Early illness detection can improve output, reduce chemical use, and boost a nation's economy. A complete system for plant disease detection using EfficientNetV2B2 and deep learning (DL) is presented in this paper. This research aims to develop a precise and effective automated system for identifying several illnesses that impact tomato plants. This will be achieved by analyzing tomato leaf photos. A dataset of high-resolution photographs of healthy and diseased tomato leaves was created to achieve this goal. The EfficientNetV2B2 model is the foundation of the deep learning system and excels at picture categorization. Transfer learning (TF) trains the model on a tomato leaf disease dataset using EfficientNetV2B2's pre-existing weights and a 256-layer dense layer. Tomato leaf diseases can be identified using the EfficientNetV2B2 model and a dense layer of 256 nodes. An ideal loss function and algorithm train and tune the model. Next, the concept is deployed in smartphones and online apps. The user can accurately diagnose tomato leaf diseases with this application. Utilizing an automated system facilitates the rapid identification of diseases, assisting in making informed decisions on disease management and promoting sustainable tomato cultivation practices. The 5-fold cross-validation method achieved 99.02% average weighted training accuracy, 99.22% average weighted validation accuracy, and 98.96% average weighted test accuracy. The split method achieved 99.93% training accuracy and 100% validation accuracy. Using the DL approach, tomato leaf disease identification achieves nearly 100% accuracy on a test dataset.


Asunto(s)
Inteligencia Artificial , Solanum lycopersicum , Teléfono Inteligente , Algoritmos , Hojas de la Planta
2.
Sensors (Basel) ; 23(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299944

RESUMEN

The Internet of vehicles (IoVs) is an innovative paradigm which ensures a safe journey by communicating with other vehicles. It involves a basic safety message (BSM) that contains sensitive information in a plain text that can be subverted by an adversary. To reduce such attacks, a pool of pseudonyms is allotted which are changed regularly in different zones or contexts. In base schemes, the BSM is sent to neighbors just by considering their speed. However, this parameter is not enough because network topology is very dynamic and vehicles can change their route at any time. This problem increases pseudonym consumption which ultimately increases communication overhead, increases traceability and has high BSM loss. This paper presents an efficient pseudonym consumption protocol (EPCP) which considers the vehicles in the same direction, and similar estimated location. The BSM is shared only to these relevant vehicles. The performance of the purposed scheme in contrast to base schemes is validated via extensive simulations. The results prove that the proposed EPCP technique outperformed compared to its counterparts in terms of pseudonym consumption, BSM loss rate and achieved traceability.


Asunto(s)
Anónimos y Seudónimos , Seguridad Computacional , Internet , Comunicación
3.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904822

RESUMEN

With continuous advancements in Internet technology and the increased use of cryptographic techniques, the cloud has become the obvious choice for data sharing. Generally, the data are outsourced to cloud storage servers in encrypted form. Access control methods can be used on encrypted outsourced data to facilitate and regulate access. Multi-authority attribute-based encryption is a propitious technique to control who can access encrypted data in inter-domain applications such as sharing data between organizations, sharing data in healthcare, etc. The data owner may require the flexibility to share the data with known and unknown users. The known or closed-domain users may be internal employees of the organization, and unknown or open-domain users may be outside agencies, third-party users, etc. In the case of closed-domain users, the data owner becomes the key issuing authority, and in the case of open-domain users, various established attribute authorities perform the task of key issuance. Privacy preservation is also a crucial requirement in cloud-based data-sharing systems. This work proposes the SP-MAACS scheme, a secure and privacy-preserving multi-authority access control system for cloud-based healthcare data sharing. Both open and closed domain users are considered, and policy privacy is ensured by only disclosing the names of policy attributes. The values of the attributes are kept hidden. Characteristic comparison with similar existing schemes shows that our scheme simultaneously provides features such as multi-authority setting, expressive and flexible access policy structure, privacy preservation, and scalability. The performance analysis carried out by us shows that the decryption cost is reasonable enough. Furthermore, the scheme is demonstrated to be adaptively secure under the standard model.


Asunto(s)
Confidencialidad , Privacidad , Humanos , Nube Computacional , Seguridad Computacional , Difusión de la Información , Atención a la Salud
4.
Multimed Syst ; 29(3): 1729-1738, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-33935377

RESUMEN

The demand for automatic detection of Novel Coronavirus or COVID-19 is increasing across the globe. The exponential rise in cases burdens healthcare facilities, and a vast amount of multimedia healthcare data is being explored to find a solution. This study presents a practical solution to detect COVID-19 from chest X-rays while distinguishing those from normal and impacted by Viral Pneumonia via Deep Convolution Neural Networks (CNN). In this study, three pre-trained CNN models (EfficientNetB0, VGG16, and InceptionV3) are evaluated through transfer learning. The rationale for selecting these specific models is their balance of accuracy and efficiency with fewer parameters suitable for mobile applications. The dataset used for the study is publicly available and compiled from different sources. This study uses deep learning techniques and performance metrics (accuracy, recall, specificity, precision, and F1 scores). The results show that the proposed approach produced a high-quality model, with an overall accuracy of 92.93%, COVID-19, a sensitivity of 94.79%. The work indicates a definite possibility to implement computer vision design to enable effective detection and screening measures.

6.
Artículo en Inglés | MEDLINE | ID: mdl-36231678

RESUMEN

Diabetes is one of the most rapidly spreading diseases in the world, resulting in an array of significant complications, including cardiovascular disease, kidney failure, diabetic retinopathy, and neuropathy, among others, which contribute to an increase in morbidity and mortality rate. If diabetes is diagnosed at an early stage, its severity and underlying risk factors can be significantly reduced. However, there is a shortage of labeled data and the occurrence of outliers or data missingness in clinical datasets that are reliable and effective for diabetes prediction, making it a challenging endeavor. Therefore, we introduce a newly labeled diabetes dataset from a South Asian nation (Bangladesh). In addition, we suggest an automated classification pipeline that includes a weighted ensemble of machine learning (ML) classifiers: Naive Bayes (NB), Random Forest (RF), Decision Tree (DT), XGBoost (XGB), and LightGBM (LGB). Grid search hyperparameter optimization is employed to tune the critical hyperparameters of these ML models. Furthermore, missing value imputation, feature selection, and K-fold cross-validation are included in the framework design. A statistical analysis of variance (ANOVA) test reveals that the performance of diabetes prediction significantly improves when the proposed weighted ensemble (DT + RF + XGB + LGB) is executed with the introduced preprocessing, with the highest accuracy of 0.735 and an area under the ROC curve (AUC) of 0.832. In conjunction with the suggested ensemble model, our statistical imputation and RF-based feature selection techniques produced the best results for early diabetes prediction. Moreover, the presented new dataset will contribute to developing and implementing robust ML models for diabetes prediction utilizing population-level data.


Asunto(s)
Diabetes Mellitus , Aprendizaje Automático , Análisis de Varianza , Área Bajo la Curva , Teorema de Bayes , Humanos
7.
Sensors (Basel) ; 22(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36146111

RESUMEN

The proliferation of the internet of things (IoT) technology has led to numerous challenges in various life domains, such as healthcare, smart systems, and mission-critical applications. The most critical issue is the security of IoT nodes, networks, and infrastructures. IoT uses the routing protocol for low-power and lossy networks (RPL) for data communication among the devices. RPL comprises a lightweight core and thus does not support high computation and resource-consuming methods for security implementation. Therefore, both IoT and RPL are vulnerable to security attacks, which are broadly categorized into RPL-specific and sensor-network-inherited attacks. Among the most concerning protocol-specific attacks are rank attacks and wormhole attacks in sensor-network-inherited attack types. They target the RPL resources and components including control messages, repair mechanisms, routing topologies, and sensor network resources by consuming. This leads to the collapse of IoT infrastructure. In this paper, a lightweight multiclass classification-based RPL-specific and sensor-network-inherited attack detection model called MC-MLGBM is proposed. A novel dataset was generated through the construction of various network models to address the unavailability of the required dataset, optimal feature selection to improve model performance, and a light gradient boosting machine-based algorithm optimized for a multiclass classification-based attack detection. The results of extensive experiments are demonstrated through several metrics including confusion matrix, accuracy, precision, and recall. For further performance evaluation and to remove any bias, the multiclass-specific metrics were also used to evaluate the model, including cross-entropy, Cohn's kappa, and Matthews correlation coefficient, and then compared with benchmark research.


Asunto(s)
Internet de las Cosas , Algoritmos , Entropía , Aprendizaje Automático
8.
Math Biosci Eng ; 19(9): 9039-9059, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35942748

RESUMEN

Missing values in the k-NN algorithm are a significant research concern, especially in low-grade tumours and CSF fluid, which are commonly identified in MRI scans. Missing values are usually ignored, but when data is mined, they can lead to bias and errors. In addition, the data is not missing at random. This study improves image accuracy, boosts the efficiency of missing k-NN hybrid values, and develops a research technique for detecting CSF fluid deposits in brain areas separated from non-tumor areas. We also offer a new method for detecting low-grade tumours or cerebrospinal fluid (CSF) formation in its early stages. In this study, we combine the hybrid K-Nearest Neighbor algorithm with the Discrete Fourier transform (DFT), as well as Time-Lagged analysis of four-dimensional (4D) MRI images. These dependencies exist in both space and time, but present techniques do not account for both sequential linkages and numerous types of missingness. To address this, we propose the DFLk-NN imputation method, which combines two imputation approaches based on a hybrid k-NN extension and the DFT to capture time-lag correlations both within and across variables. There are several types of missingness are enables the imputation of missing values across the variable even when all the data for a given time point is missing. The proposed method gives high accuracies of MRI datasets and retrieves the missing data in the images.


Asunto(s)
Algoritmos , Proyectos de Investigación , Análisis por Conglomerados , Análisis de Fourier , Imagen por Resonancia Magnética
9.
Healthcare (Basel) ; 10(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35885745

RESUMEN

MRI is an influential diagnostic imaging technology specifically worn to detect pathological changes in tissues with organs early. It is also a non-invasive imaging method. Medical image segmentation is a complex and challenging process due to the intrinsic nature of images. The most consequential imaging analytical approach is MRI, which has been in use to detect abnormalities in tissues and human organs. The portrait was actualized for CAD (computer-assisted diagnosis) utilizing image processing techniques with deep learning, initially to perceive a brain tumor in a person with early signs of brain tumor. Using AHCN-LNQ (adaptive histogram contrast normalization with learning-based neural quantization), the first image is preprocessed. When compared to extant techniques, the simulation outcome shows that this proposed method achieves an accuracy of 93%, precision of 92%, and 94% of specificity.

10.
Sensors (Basel) ; 22(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35898103

RESUMEN

Lane detection plays a vital role in making the idea of the autonomous car a reality. Traditional lane detection methods need extensive hand-crafted features and post-processing techniques, which make the models specific feature-oriented, and susceptible to instability for the variations on road scenes. In recent years, Deep Learning (DL) models, especially Convolutional Neural Network (CNN) models have been proposed and utilized to perform pixel-level lane segmentation. However, most of the methods focus on achieving high accuracy while considering structured roads and good weather conditions and do not put emphasis on testing their models on defected roads, especially ones with blurry lane lines, no lane lines, and cracked pavements, which are predominant in the real world. Moreover, many of these CNN-based models have complex structures and require high-end systems to operate, which makes them quite unsuitable for being implemented in embedded devices. Considering these shortcomings, in this paper, we have introduced a novel CNN model named LLDNet based on an encoder-decoder architecture that is lightweight and has been tested in adverse weather as well as road conditions. A channel attention and spatial attention module are integrated into the designed architecture to refine the feature maps for achieving outstanding results with a lower number of parameters. We have used a hybrid dataset to train our model, which was created by combining two separate datasets, and have compared the model with a few state-of-the-art encoder-decoder architectures. Numerical results on the utilized dataset show that our model surpasses the compared methods in terms of dice coefficient, IoU, and the size of the models. Moreover, we carried out extensive experiments on the videos of different roads in Bangladesh. The visualization results exhibit that our model can detect the lanes accurately in both structured and defected roads and adverse weather conditions. Experimental results elicit that our designed method is capable of detecting lanes accurately and is ready for practical implementation.


Asunto(s)
Automóviles , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Espectrometría Raman , Tiempo (Meteorología)
11.
Sci Rep ; 12(1): 11782, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821271

RESUMEN

This paper presents a new contribution in the field of the optimization of the techniques of control of the wind systems and the improvement of the quality of energy produced in the grid. The Sliding Mode control technique gives quite interesting results, but its major drawback lies in the phenomenon of chattering (oscillations), which reduces the system's precision. We propose in this work a solution to cancel this chattering phenomenon by the implication of the adaptive Backstepping technique to control the powers of the double-fed asynchronous generator (DFIG) connected to the electrical network by two converters (network side and side machine) in the nominal part of the sliding mode model. This hybrid technique will correct errors of precision and stability and the performance of the wind system obtained in terms of efficiency, active and reactive power is significant. First, a review of the wind system was presented. Then, an exhaustive explanation of the Backstepping technique based on the Lyapunov stability and optimization method has been reported. Subsequently, a validation on the Matlab & Simulink environment was carried out to test the performance and robustness of the proposed model. The results obtained from this work, either by follow-up or robustness tests, show a significant performance improvement compared to other control techniques.

12.
Sensors (Basel) ; 22(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684778

RESUMEN

The growth of the Internet has expanded the amount of data expressed by users across multiple platforms. The availability of these different worldviews and individuals' emotions empowers sentiment analysis. However, sentiment analysis becomes even more challenging due to a scarcity of standardized labeled data in the Bangla NLP domain. The majority of the existing Bangla research has relied on models of deep learning that significantly focus on context-independent word embeddings, such as Word2Vec, GloVe, and fastText, in which each word has a fixed representation irrespective of its context. Meanwhile, context-based pre-trained language models such as BERT have recently revolutionized the state of natural language processing. In this work, we utilized BERT's transfer learning ability to a deep integrated model CNN-BiLSTM for enhanced performance of decision-making in sentiment analysis. In addition, we also introduced the ability of transfer learning to classical machine learning algorithms for the performance comparison of CNN-BiLSTM. Additionally, we explore various word embedding techniques, such as Word2Vec, GloVe, and fastText, and compare their performance to the BERT transfer learning strategy. As a result, we have shown a state-of-the-art binary classification performance for Bangla sentiment analysis that significantly outperforms all embedding and algorithms.


Asunto(s)
Procesamiento de Lenguaje Natural , Análisis de Sentimientos , Algoritmos , Humanos , Lenguaje , Aprendizaje Automático
13.
Comput Intell Neurosci ; 2022: 5140148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528341

RESUMEN

White blood cells (WBCs) are blood cells that fight infections and diseases as a part of the immune system. They are also known as "defender cells." But the imbalance in the number of WBCs in the blood can be hazardous. Leukemia is the most common blood cancer caused by an overabundance of WBCs in the immune system. Acute lymphocytic leukemia (ALL) usually occurs when the bone marrow creates many immature WBCs that destroy healthy cells. People of all ages, including children and adolescents, can be affected by ALL. The rapid proliferation of atypical lymphocyte cells can cause a reduction in new blood cells and increase the chances of death in patients. Therefore, early and precise cancer detection can help with better therapy and a higher survival probability in the case of leukemia. However, diagnosing ALL is time-consuming and complicated, and manual analysis is expensive, with subjective and error-prone outcomes. Thus, detecting normal and malignant cells reliably and accurately is crucial. For this reason, automatic detection using computer-aided diagnostic models can help doctors effectively detect early leukemia. The entire approach may be automated using image processing techniques, reducing physicians' workload and increasing diagnosis accuracy. The impact of deep learning (DL) on medical research has recently proven quite beneficial, offering new avenues and possibilities in the healthcare domain for diagnostic techniques. However, to make that happen soon in DL, the entire community must overcome the explainability limit. Because of the black box operation's shortcomings in artificial intelligence (AI) models' decisions, there is a lack of liability and trust in the outcomes. But explainable artificial intelligence (XAI) can solve this problem by interpreting the predictions of AI systems. This study emphasizes leukemia, specifically ALL. The proposed strategy recognizes acute lymphoblastic leukemia as an automated procedure that applies different transfer learning models to classify ALL. Hence, using local interpretable model-agnostic explanations (LIME) to assure validity and reliability, this method also explains the cause of a specific classification. The proposed method achieved 98.38% accuracy with the InceptionV3 model. Experimental results were found between different transfer learning methods, including ResNet101V2, VGG19, and InceptionResNetV2, later verified with the LIME algorithm for XAI, where the proposed method performed the best. The obtained results and their reliability demonstrate that it can be preferred in identifying ALL, which will assist medical examiners.


Asunto(s)
Inteligencia Artificial , Leucemia , Adolescente , Niño , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Leucemia/diagnóstico , Aprendizaje Automático , Reproducibilidad de los Resultados
14.
J Healthc Eng ; 2022: 3769965, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463667

RESUMEN

The environment, especially water, gets polluted due to industrialization and urbanization. Pollution due to industrialization and urbanization has harmful effects on both the environment and the lives on Earth. This polluted water can cause food poisoning, diarrhea, short-term gastrointestinal problems, respiratory diseases, skin problems, and other serious health complications. In a developing country like Bangladesh, where ready-made garments sector is one of the major sources of the total Gross Domestic Product (GDP), most of the wastes released from the garment factories are dumped into the nearest rivers or canals. Hence, the quality of the water of these bodies become very incompatible for the living beings, and so, it has become one of the major threats to the environment and human health. In addition, the amount of fish in the rivers and canals in Bangladesh is decreasing day by day as a result of water pollution. Therefore, to save fish and other water animals and the environment, we need to monitor the quality of the water and find out the reasons for the pollution. Real-time monitoring of the quality of water is vital for controlling water pollution. Most of the approaches for controlling water pollution are mainly biological and lab-based, which takes a lot of time and resources. To address this issue, we developed an Internet of Things (IoT)-based real-time water quality monitoring system, integrated with a mobile application. The proposed system in this research measures some of the most important indexes of water, including the potential of hydrogen (pH), total dissolved solids (TDS), and turbidity, and temperature of water. The proposed system results will be very helpful in saving the environment, and thus, improving the health of living creatures on Earth.


Asunto(s)
Internet de las Cosas , Calidad del Agua , Animales , Bangladesh , Ambiente , Monitoreo del Ambiente , Humanos , Residuos Industriales
15.
Comput Math Methods Med ; 2022: 2794326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35132329

RESUMEN

Salp swarm algorithm (SSA) is an innovative contribution to smart swarm algorithms and has shown its utility in a wide range of research domains. While it is an efficient algorithm, it is noted that SSA suffers from several issues, including weak exploitation, convergence, and unstable exploitation and exploration. To overcome these, an improved SSA called as adaptive salp swarm algorithm (ASSA) was proposed. Thresholding is among the most effective image segmentation methods in which the objective function is described in relation of threshold values and their position in the histogram. Only if one threshold is assumed, a segmented image of two groups is obtained. But on other side, several groups in the output image are generated with multilevel thresholds. The methods proposed by authors previously were traditional measures to identify objective functions. However, the basic challenge with thresholding methods is defining the threshold numbers that the individual must choose. In this paper, ASSA, along with type II fuzzy entropy, is proposed. The technique presented is examined in context with multilevel image thresholding, specifically with ASSA. For this reason, the proposed method is tested using various images simultaneously with histograms. For evaluating the performance efficiency of the proposed method, the results are compared, and robustness is tested with the efficiency of the proposed method to multilevel segmentation of image; numerous images are utilized arbitrarily from datasets.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Biología Computacional , Simulación por Computador , Entropía , Lógica Difusa , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Urocordados/fisiología
16.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35062491

RESUMEN

Due to the value and importance of patient health records (PHR), security is the most critical feature of encryption over the Internet. Users that perform keyword searches to gain access to the PHR stored in the database are more susceptible to security risks. Although a blockchain-based healthcare system can guarantee security, present schemes have several flaws. Existing techniques have concentrated exclusively on data storage and have utilized blockchain as a storage database. In this research, we developed a unique deep-learning-based secure search-able blockchain as a distributed database using homomorphic encryption to enable users to securely access data via search. Our suggested study will increasingly include secure key revocation and update policies. An IoT dataset was used in this research to evaluate our suggested access control strategies and compare them to benchmark models. The proposed algorithms are implemented using smart contracts in the hyperledger tool. The suggested strategy is evaluated in comparison to existing ones. Our suggested approach significantly improves security, anonymity, and monitoring of user behavior, resulting in a more efficient blockchain-based IoT system as compared to benchmark models.


Asunto(s)
Cadena de Bloques , Aprendizaje Profundo , Registros de Salud Personal , Manejo de Datos , Atención a la Salud , Humanos
17.
Multimed Syst ; 28(4): 1165-1174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35017797

RESUMEN

The COVID-19 pandemic has opened numerous challenges for scientists to use massive data to develop an automatic diagnostic tool for COVID-19. Since the outbreak in January 2020, COVID-19 has caused a substantial destructive impact on society and human life. Numerous studies have been conducted in search of a suitable solution to test COVID-19. Artificial intelligence (AI) based research is not behind in this race, and many AI-based models have been proposed. This paper proposes a lightweight convolutional neural network (CNN) model to classify COVID and Non_COVID patients by analyzing the hidden features in the X-Ray images. The model has been evaluated with different standard metrics to prove the reliability of the model. The model obtained 98.78%, 93.22%, and 92.7% accuracy in the training, validation, and testing phases. In addition, the model achieved 0.964 scores in the Area Under Curve (AUC) metric. We compared the model with four state-of-art pre-trained models (VGG16, InceptionV3, DenseNet121, and EfficientNetB6). The evaluation results demonstrate that the proposed CNN model is a candidate for an automatic diagnostic tool for the classification of COVID-19 patients using chest X-ray images. This research proposes a technique to classify COVID-19 patients and does not claim any medical diagnosis accuracy.

18.
Neural Comput Appl ; 34(14): 11383-11394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33052172

RESUMEN

Breast cancer is the most prevailing cancer in the world and each year affecting millions of women. It is also the cause of largest number of deaths in women dying in cancers. During the last few years, researchers are proposing different convolutional neural network models in order to facilitate diagnostic process of breast cancer. Convolutional neural networks are showing promising results to classify cancers using image datasets. There is still a lack of standard models which can claim the best model because of unavailability of large datasets that can be used for models' training and validation. Hence, researchers are now focusing on leveraging the transfer learning approach using pre-trained models as feature extractors that are trained over millions of different images. With this motivation, this paper considers eight different fine-tuned pre-trained models to observe how these models classify breast cancers applying on ultrasound images. We also propose a shallow custom convolutional neural network that outperforms the pre-trained models with respect to different performance metrics. The proposed model shows 100% accuracy and achieves 1.0 AUC score, whereas the best pre-trained model shows 92% accuracy and 0.972 AUC score. In order to avoid biasness, the model is trained using the fivefold cross validation technique. Moreover, the model is faster in training than the pre-trained models and requires a small number of trainable parameters. The Grad-CAM heat map visualization technique also shows how perfectly the proposed model extracts important features to classify breast cancers.

19.
J Healthc Eng ; 2021: 2192913, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868511

RESUMEN

This paper presents the research and development of an Internet of Things- (IoT-) based remote health monitoring system for asthmatic patients. Asthma is an inflammatory disease. Asthma causes the lungs to swell and get narrower, making it difficult to carry air in and out of the lungs. This situation makes breathing very difficult. Remote patient monitoring (RPM) is a method of collecting health-related data from patients who are in a remote location and electronically transmitting it to healthcare providers for evaluation and consultation. The aim of this study is to design a monitoring system that allows doctors to monitor asthmatic patients from a remote area. The proposed system will allow patients to measure oxygen saturation (SpO2), heart rate, body temperature, humidity, volatile gases, room temperature, and electrocardiogram (ECG) using various sensors, which will be displayed in an application. This data is then sent to the doctor to monitor the patient's condition and suggest appropriate actions. Overall, the system consists of an Android application, a website, and various sensors. The Android studio and Java programming language were used to develop the application. For the frontend, the website was built using Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), JavaScript, and jQuery. The system also uses Django, a Python-based open-source web framework, for the backend. The system developed the various sensors using an ESP8266 microcontroller compatible with the Arduino Integrated Development Environment (IDE). The system uses a MAX30100 pulse oximeter and heart rate sensor, a GY-906 MLX90614 noncontact precision thermometer, a DHT11 humidity and temperature sensor, a MQ-135 gas and air quality sensor, and an AD8232 ECG sensor for collecting various parameters that may trigger asthma attacks. Finally, the system developed the Asthma Tracker app and the Asthma Tracker website for remote health monitoring. The system was initially tested on demo patients and later deployed and tested on seven real human test subjects. Overall, the monitoring system produced satisfactory results. The data acquired by the sensors has a high level of accuracy. The system also maintained user-friendliness and low cost.


Asunto(s)
Asma , Saturación de Oxígeno , Asma/diagnóstico , Electrocardiografía , Humanos , Monitoreo Fisiológico , Investigación
20.
Comput Math Methods Med ; 2021: 4321131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899965

RESUMEN

The COVID-19 pandemic has had a devastating effect on many people, creating severe anxiety, fear, and complicated feelings or emotions. After the initiation of vaccinations against coronavirus, people's feelings have become more diverse and complex. Our aim is to understand and unravel their sentiments in this research using deep learning techniques. Social media is currently the best way to express feelings and emotions, and with the help of Twitter, one can have a better idea of what is trending and going on in people's minds. Our motivation for this research was to understand the diverse sentiments of people regarding the vaccination process. In this research, the timeline of the collected tweets was from December 21 to July21. The tweets contained information about the most common vaccines available recently from across the world. The sentiments of people regarding vaccines of all sorts were assessed using the natural language processing (NLP) tool, Valence Aware Dictionary for sEntiment Reasoner (VADER). Initializing the polarities of the obtained sentiments into three groups (positive, negative, and neutral) helped us visualize the overall scenario; our findings included 33.96% positive, 17.55% negative, and 48.49% neutral responses. In addition, we included our analysis of the timeline of the tweets in this research, as sentiments fluctuated over time. A recurrent neural network- (RNN-) oriented architecture, including long short-term memory (LSTM) and bidirectional LSTM (Bi-LSTM), was used to assess the performance of the predictive models, with LSTM achieving an accuracy of 90.59% and Bi-LSTM achieving 90.83%. Other performance metrics such as precision,, F1-score, and a confusion matrix were also used to validate our models and findings more effectively. This study improves understanding of the public's opinion on COVID-19 vaccines and supports the aim of eradicating coronavirus from the world.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/prevención & control , Aprendizaje Profundo , Análisis de Sentimientos , Medios de Comunicación Sociales , Actitud , Actitud Frente a la Salud , Bases de Datos Factuales , Humanos , Lenguaje , Modelos Estadísticos , Redes Neurales de la Computación , Opinión Pública , Reproducibilidad de los Resultados , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...