Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(6): 191, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696024

RESUMEN

Pesticides are frequently used to protect crop yields and manage malaria vectors; however, their inadvertent transport into aquatic habitats poses a significant concern. Various anthropogenic activities influence the Indus River in Pakistan. This study aimed to assess the presence of eight pesticide residues at three different sites (Kalabagh, Kundian, and Chashma) in water, sediment, and the fish species (Labeo rohita) during both dry and wet seasons to measure the intensity of this pressure. Pesticide analysis was carried out using gas chromatography equipped with an electron capture detector. The results revealed the highest concentrations of pesticides during both dry and wet seasons at all sites, measuring 0.83 and 0.62 µg/l (water), 12.37 and 9.20 µg/g/dw (sediment), and 14.27 and 11.29 µg/g/ww (L. rohita), respectively. Overall, pesticide concentrations were higher in the dry season than in the wet season across all study sites. Based on detection frequency and concentration in both seasons at all sites, dominant pesticides included cypermethrin and carbofuran (in water), as well as endosulfan and cypermethrin (in sediment and fish tissue). Levels of endosulfan and cypermethrin exceeded standard limits. Moreover, principal component analysis (PCA) indicated no correlation among pesticides in fish tissue, sediment, and water. However, pesticides exhibited different behavior in different seasons. Furthermore, endosulfan and triazophos impose great human health risk, as indicated by the THQ value (> 1). The overall HI value was greater for site 1 in the dry season (8.378). The study concluded that the presence of agricultural pesticides in the Indus River poses a risk to aquatic life and has the potential to disrupt the entire food chain. This highlights the importance of sustainable practices for the study area and Pakistan overall agricultural and environmental sustainability. It is further recommended to strengthen regulations for reduced pesticide use and promote eco-friendly pest management.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Plaguicidas , Ríos , Contaminantes Químicos del Agua , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Animales , Ríos/química , Pakistán , Humanos , Medición de Riesgo , Plaguicidas/análisis , Monitoreo del Ambiente/métodos , Estaciones del Año , Residuos de Plaguicidas/análisis , Cyprinidae , Peces
2.
Biol Trace Elem Res ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536638

RESUMEN

The exposure of fish to heavy metals can significantly impact physiological processes and potentially lead to adverse health effects. This study assesses the effects of exposure to Cd and Pb sublethal concentrations in water on Wallagu attu. A total of 48 fish with an average body weight of 145.5 ± 26 g were distributed among three groups (control, Cd-treated, and Pb-treated) within 60 L fiberglass tanks. They were exposed to 30% sublethal concentrations of Cd and Pb for durations of 1, 15, and 30 days. Following this exposure, an assessment was conducted on metal bioaccumulation and hemato-biochemical responses. Results revealed a significantly (P < 0.05) higher concentration of heavy metals in the fish tissues of metals exposed groups than in the control. The concentration of Cd and Pb increases in fish tissues (kidney > gills > intestine) with exposure time. In most cases, the Pb-exposed group exhibited significantly (P < 0.05) higher concentrations of Pb in different tissues than the Cd-treated group. With extended exposure time, the activities of CAT and SOD show a significant decrease in both Cd and Pb-treated groups. However, the reduction in activities was more pronounced in the Cd-exposed group. On 15 and 30 days, the levels of red blood cells (RBC), hemoglobin (HB), hematocrit (HCT), and total protein (TP) decrease in groups exposed to Cd and Pb. The cortisol and glucose levels exhibit a more noticeable (P < 0.05) increase with prolonged exposure to Cd and Pb than the control group. On day 30, the survival rate decreased more in the Pb-exposed group. The findings of this study indicate that exposure to sublethal doses of Cd and Pb induces stress in Wallagu attu, resulting in rapid changes in specific hemato-biochemical parameters.

3.
Environ Sci Pollut Res Int ; 30(45): 100646-100659, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37639089

RESUMEN

Overuse of fertilizers on agricultural lands and fish ponds may result in serious pollution problems, such as heavy metals that can enter the food chain and pose serious health problems. Due to this, the present study investigates the incidence of heavy metals in commonly used fertilizers and its association with heavy metals in vegetables, soil, fish species, and pond water. Samples were collected from different sites (fields and ponds) in district Kohat, where the application of fertilizers was common and control groups (no fertilizers used). Heavy metal analysis was carried out through a spectrophotometer. Results showed higher Cd and Cr concentrations in triple superphosphate (TSP), Cu and Pb in nitrogen, phosphorus, and potassium (NPK), while lower concentrations were found in gypsum. In vegetables (onion, tomato, brinjal, and potato) and associated soil, most of the heavy metals concentrations were significantly higher (P < 0.05) in fertilizer-applied sites than in the control. Also, the Cd concentration in potatoes and Pb level in all vegetables obtained from sites were greater than the WHO/FAO standard limit. In the case of fish species (Hypophthalmichthys molitrix and Cyprinus carpio) muscles and their habitat (water), all the understudy heavy metals were notably higher (P < 0.05) in fertilizer-applied sites (ponds) than the control group. Collectively, in all vegetables and muscles of fish species, the bioaccumulation factor was higher in sites compared to the control. The estimated daily intake (EDI) and target hazard quotient (THQ) values were also higher in fertilizer-applied sites (fields and ponds) than control. The health index (HI) value was > 1 in vegetables (onion, tomato, and potato) and fish muscles collected from different sites compared to the control. Thus, there is the possibility of severe health risks. The use of fertilizers must be carefully monitored in order to ensure that humans and animals are safe from exposure to heavy metals.

4.
Infect Drug Resist ; 15: 7699-7705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36600953

RESUMEN

Introduction: Antibiotics are being used in humans and animals for treatment and control of bacterial infections. Excessive use of antibiotics in the production of poultry is a popular practice, but it poses serious health issues by transferring resistance from farm to humans via food or direct exposure. Study Objective: The objective of this study was to carry out a comparison of the resistance and sensitivity profile of isolated isolates from sewage of toilets that were in use of workers inside the farm and from sewage of household toilets. Methodology: In this study, a total of 320 sewage samples were collected. The antibiotic susceptibility profile was checked by Kirby-Bauer disc diffusion method, and the statistical analysis was carried out by MS excel. Chi-square test was performed to determine whether the antibiograms from two sample types were statistically different from each other or not. Results: From 320 sewage samples, a total of 296 bacterial isolates were isolated among which the leading bacterium was E. coli. The proportion of resistance, ESBL production and MDR was significantly higher in bacteria isolated from sewage of toilets under use of poultry farm workers as compared to the sewage from domestic use toilets. Conclusion: Resistance significantly increased in the bacteria isolated from toilets under use of poultry farm workers as compared to the ones isolated from control sewage samples.

5.
Autophagy ; 17(4): 888-902, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32174246

RESUMEN

Staphylococcus aureus is a major human pathogen causing multiple pathologies, from cutaneous lesions to life-threatening sepsis. Although neutrophils contribute to immunity against S. aureus, multiple lines of evidence suggest that these phagocytes can provide an intracellular niche for staphylococcal dissemination. However, the mechanism of neutrophil subversion by intracellular S. aureus remains unknown. Targeting of intracellular pathogens by macroautophagy/autophagy is recognized as an important component of host innate immunity, but whether autophagy is beneficial or detrimental to S. aureus-infected hosts remains controversial. Here, using larval zebrafish, we showed that the autophagy marker Lc3 rapidly decorates S. aureus following engulfment by macrophages and neutrophils. Upon phagocytosis by neutrophils, Lc3-positive, non-acidified spacious phagosomes are formed. This response is dependent on phagocyte NADPH oxidase as both cyba/p22phox knockdown and diphenyleneiodonium (DPI) treatment inhibited Lc3 decoration of phagosomes. Importantly, NADPH oxidase inhibition diverted neutrophil S. aureus processing into tight acidified vesicles, which resulted in increased host resistance to the infection. Some intracellular bacteria within neutrophils were also tagged by Sqstm1/p62-GFP fusion protein and loss of Sqstm1 impaired host defense. Together, we have shown that intracellular handling of S. aureus by neutrophils is best explained by Lc3-associated phagocytosis (LAP), which appears to provide an intracellular niche for bacterial pathogenesis, while the selective autophagy receptor Sqstm1 is host-protective. The antagonistic roles of LAP and Sqstm1-mediated pathways in S. aureus-infected neutrophils may explain the conflicting reports relating to anti-staphylococcal autophagy and provide new insights for therapeutic strategies against antimicrobial-resistant Staphylococci.Abbreviations: ATG: autophagy related; CFU: colony-forming units; CMV: cytomegalovirus; Cyba/P22phox: cytochrome b-245, alpha polypeptide; DMSO: dimethyl sulfoxide; DPI: diphenyleneiodonium; EGFP: enhanced green fluorescent protein; GFP: green fluorescent protein; hpf: hours post-fertilization; hpi: hours post-infection; Irf8: interferon regulatory factor 8; LAP: LC3-associated phagocytosis; lyz: lysozyme; LWT: london wild type; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NADPH oxidase: nicotinamide adenine dinucleotide phosphate oxidase; RFP: red fluorescent protein; ROS: reactive oxygen species; RT-PCR: reverse transcriptase polymerase chain reaction; Sqstm1/p62: sequestosome 1; Tg: transgenic; TSA: tyramide signal amplification.


Asunto(s)
Autofagia , Espacio Intracelular/microbiología , Neutrófilos/microbiología , Staphylococcus aureus/fisiología , Animales , Animales Modificados Genéticamente , Cinética , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas Asociadas a Microtúbulos/metabolismo , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Fagocitosis , Fagosomas/metabolismo , Agregado de Proteínas , Proteína Sequestosoma-1/metabolismo , Pez Cebra/embriología , Pez Cebra/microbiología , Proteínas de Pez Cebra/metabolismo
6.
Mitochondrial DNA B Resour ; 5(3): 3000-3003, 2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-33458033

RESUMEN

DNA barcoding is a rapid, precise, and effective way of species identification. A short and standard target gene marker is used to create sequence profile of identified species. Specific tag or marker is used, which is derived from mitochondrial COI for identification. Effectiveness of this method axes the degree of divergence among species. Identification is necessary for their representation. In the present work, Catla catla was used to study by using Cytochrome C Oxidase 1.The genetic distances were computed, and Neighbor Joining tree was constructed based on the Kimura 2 Parameter method. GenBank and BOLD revealed definitive identity matches. Conspecific and congeneric K2P nucleotide divergence was estimated. Evolutionary tree was analyzed clearly by relating their species to phylogenetic tree, as same as species were bunched under same tree node, while species were differently clustered under distinct nodes. These findings conclude that the gene sequence may serve as a milestone for identification and phylogenetic history of related species at molecular level.

7.
Artículo en Inglés | MEDLINE | ID: mdl-31428591

RESUMEN

Intracellular pathogens such as Salmonella depend on their molecular virulence factors to evade host defense responses like autophagy. Using a zebrafish systemic infection model, we have previously shown that phagocytes, predominantly macrophages, target Salmonella Typhimurium by an autophagy-related pathway known as Lc3-associated phagocytosis (LAP), which is dependent on the host protein Rubicon. Here, we explore the influence of Salmonella virulence factors on pathogenicity in the zebrafish model and induction of LAP as a defense response. We investigated five mutant strains that all could trigger GFP-Lc3 recruitment as puncta or rings around single bacteria or bacterial clusters, in a Rubicon-dependent manner. We found that S. Typhimurium strains carrying mutations in PhoP or PurA, responsible for adaptation to the intracellular environment and efficient metabolism of purines, respectively, are attenuated in the zebrafish model. However, both strains show increased virulence when LAP is inhibited by knockdown of Rubicon. Mutations in type III secretion systems 1 and 2, SipB and SsrB, which are important for invading and replicating in non-phagocytic cells, did not affect the ability to establish successful infection in the zebrafish model. This observation is in line with our previous characterization of this infection model revealing that macrophages actively phagocytose the majority of S. Typhimurium. In contrast to SipB mutants, SsrB mutants were unable to become more virulent in Rubicon-deficient hosts, suggesting that type III system 2 effectors are important for intracellular replication of Salmonella in the absence of LAP. Finally, we found that mutation of FlhD, required for production of flagella, renders S. Typhimurium hypervirulent both in wild type zebrafish embryos and in Rubicon-deficient hosts. FlhD mutation also led to lower levels of GFP-Lc3 recruitment compared with the wild type strain, indicating that recognition of flagellin by the host innate immune system promotes the LAP response. Together, our results provide new evidence that the Rubicon-dependent LAP process is an important defense mechanism against S. Typhimurium.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Interacciones Huésped-Patógeno , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Fagosomas/microbiología , Salmonella typhimurium/inmunología , Factores de Virulencia/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Modelos Animales de Enfermedad , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Salmonella typhimurium/crecimiento & desarrollo , Pez Cebra
8.
Autophagy ; 15(5): 796-812, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30676840

RESUMEN

Innate immune defense against intracellular pathogens, like Salmonella, relies heavily on the autophagy machinery of the host. This response is studied intensively in epithelial cells, the target of Salmonella during gastrointestinal infections. However, little is known of the role that autophagy plays in macrophages, the predominant carriers of this pathogen during systemic disease. Here we utilize a zebrafish embryo model to study the interaction of S. enterica serovar Typhimurium with the macroautophagy/autophagy machinery of macrophages in vivo. We show that phagocytosis of live but not heat-killed Salmonella triggers recruitment of the autophagy marker GFP-Lc3 in a variety of patterns labeling tight or spacious bacteria-containing compartments, also revealed by electron microscopy. Neutrophils display similar GFP-Lc3 associations, but genetic modulation of the neutrophil/macrophage balance and ablation experiments show that macrophages are critical for the defense response. Deficiency of atg5 reduces GFP-Lc3 recruitment and impairs host resistance, in contrast to atg13 deficiency, indicating that Lc3-Salmonella association at this stage is independent of the autophagy preinitiation complex and that macrophages target Salmonella by Lc3-associated phagocytosis (LAP). In agreement, GFP-Lc3 recruitment and host resistance are impaired by deficiency of Rubcn/Rubicon, known as a negative regulator of canonical autophagy and an inducer of LAP. We also found strict dependency on NADPH oxidase, another essential factor for LAP. Both Rubcn and NADPH oxidase are required to activate a Salmonella biosensor for reactive oxygen species inside infected macrophages. These results identify LAP as the major host protective autophagy-related pathway responsible for macrophage defense against Salmonella during systemic infection. Abbreviations: ATG: autophagy related gene; BECN1: Beclin 1; CFU: colony forming units; CYBA/P22PHOX: cytochrome b-245, alpha chain; CYBB/NOX2: cytochrome b-245 beta chain; dpf: days post fertilization; EGFP: enhanced green fluorescent protein; GFP: green fluorescent protein; hfp: hours post fertilization; hpi: hours post infection; IRF8: interferon regulatory factor 8; Lcp1/L-plastin: lymphocyte cytosolic protein 1; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1A/1B-light chain 3; mCherry: red fluorescent protein; mpeg1: macrophage expressed gene 1; mpx: myeloid specific peroxidase; NADPH oxidase: nicotinamide adenine dinucleotide phosphate oxidase; NCF4/P40PHOX: neutrophil cytosolic factor 4; NTR-mCherry: nitroreductase-mCherry fusion; PTU: phenylthiourea; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB-1 inducible coiled coin 1; ROS: reactive oxygen species; RT-PCR: reverse transcriptase polymerase chain reaction; RUBCN/RUBICON: RUN and cysteine rich domain containing BECN1-interacting protein; SCV: Salmonella-containing vacuole; S. Typhimurium/S.T: Salmonella enterica serovar Typhimurium; TEM: transmission electron microscopy; Tg: transgenic; TSA: tyramide signal amplification; ULK1/2: unc-51-like autophagy activating kinase 1/2; UVRAG: UVRAG: UV radiation resistance associated; wt: wild type.


Asunto(s)
Modelos Animales de Enfermedad , Macrófagos/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Fagocitosis/genética , Salmonelosis Animal , Salmonella typhimurium/inmunología , Proteínas de Pez Cebra/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Autofagia/fisiología , Bacteriemia/genética , Bacteriemia/inmunología , Bacteriemia/microbiología , Bacteriemia/patología , Embrión no Mamífero , Proteínas Asociadas a Microtúbulos/genética , Fagocitosis/inmunología , Especies Reactivas de Oxígeno/metabolismo , Salmonelosis Animal/genética , Salmonelosis Animal/inmunología , Salmonelosis Animal/metabolismo , Salmonelosis Animal/microbiología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/inmunología , Pez Cebra/microbiología , Proteínas de Pez Cebra/genética
9.
Curr Top Dev Biol ; 124: 277-329, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28335862

RESUMEN

Zebrafish has been used for over a decade to study the mechanisms of a wide variety of inflammatory disorders and infections, with models ranging from bacterial, viral, to fungal pathogens. Zebrafish has been especially relevant to study the differentiation, specialization, and polarization of the two main innate immune cell types, the macrophages and the neutrophils. The optical accessibility and the early appearance of myeloid cells that can be tracked with fluorescent labels in zebrafish embryos and the ability to use genetics to selectively ablate or expand immune cell populations have permitted studying the interaction between infection, development, and metabolism. Additionally, zebrafish embryos are readily colonized by a commensal flora, which facilitated studies that emphasize the requirement for immune training by the natural microbiota to properly respond to pathogens. The remarkable conservation of core mechanisms required for the recognition of microbial and danger signals and for the activation of the immune defenses illustrates the high potential of the zebrafish model for biomedical research. This review will highlight recent insight that the developing zebrafish has contributed to our understanding of host responses to invading microbes and the involvement of the microbiome in several physiological processes. These studies are providing a mechanistic basis for developing novel therapeutic approaches to control infectious diseases.


Asunto(s)
Enfermedades Transmisibles/inmunología , Modelos Animales de Enfermedad , Sistema Inmunológico/embriología , Pez Cebra/inmunología , Animales , Embrión no Mamífero/inmunología , Embrión no Mamífero/microbiología , Sistema Inmunológico/microbiología , Inmunidad Innata , Pez Cebra/genética , Pez Cebra/microbiología
10.
Dis Model Mech ; 7(7): 785-97, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24973749

RESUMEN

Studying macrophage biology in the context of a whole living organism provides unique possibilities to understand the contribution of this extremely dynamic cell subset in the reaction to infections, and has revealed the relevance of cellular and molecular processes that are fundamental to the cell-mediated innate immune response. In particular, various recently established zebrafish infectious disease models are contributing substantially to our understanding of the mechanisms by which different pathogens interact with macrophages and evade host innate immunity. Transgenic zebrafish lines with fluorescently labeled macrophages and other leukocyte populations enable non-invasive imaging at the optically transparent early life stages. Furthermore, there is a continuously expanding availability of vital reporters for subcellular compartments and for probing activation of immune defense mechanisms. These are powerful tools to visualize the activity of phagocytic cells in real time and shed light on the intriguing paradoxical roles of these cells in both limiting infection and supporting the dissemination of intracellular pathogens. This Review will discuss how several bacterial and fungal infection models in zebrafish embryos have led to new insights into the dynamic molecular and cellular mechanisms at play when pathogens encounter host macrophages. We also describe how these insights are inspiring novel therapeutic strategies for infectious disease treatment.


Asunto(s)
Enfermedades Transmisibles/inmunología , Enfermedades Transmisibles/terapia , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Macrófagos/patología , Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA