Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 125, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212625

RESUMEN

Dynamics in a quantum material is described by quantized collective motion: a quasiparticle. The single-quasiparticle description is useful for a basic understanding of the system, whereas a phenomenon beyond the simple description such as quasiparticle decay which affects the current carried by the quasiparticle is an intriguing topic. The instability of the quasiparticle is phenomenologically determined by the magnitude of the repulsive interaction between a single quasiparticle and the two-quasiparticle continuum. Although the phenomenon has been studied in several materials, thermodynamic tuning of the quasiparticle decay in a single material has not yet been investigated. Here we show, by using neutron scattering, magnetic field control of the magnon decay in a quantum antiferromagnet RbFeCl3, where the interaction between the magnon and continuum is tuned by the field. At low fields where the interaction is small, the single magnon decay process is observed. In contrast, at high fields where the interaction exceeds a critical magnitude, the magnon is pushed downwards in energy and its lifetime increases. Our study demonstrates that field control of quasiparticle decay is possible in the system where the two-quasiparticle continuum covers wide momentum-energy space, and the phenomenon of the magnon avoiding decay is ubiquitous.

2.
Inorg Chem ; 60(20): 15078-15084, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34590476

RESUMEN

In materials showing a linear magnetoelectric (ME) effect, unconventional functionalities can be anticipated such as electric control of magnetism and nonreciprocal optical responses. Thus, the search for new linear ME materials is of interest in materials science. Here, using a recently proposed design principle of linear ME materials, which is based on the combination of local structural asymmetry and collinear antiferromagnetism, we demonstrate that an anion-deficient fluorite derivative, Mn3Ta2O8, is a new linear ME material. This is evidenced by the onset of magnetic-field-induced electric polarization in its collinear antiferromagnetic phase below TN = 24 K. Furthermore, we also find an antiferroelectric-like phase transition at TS = 55 K, which is attributable to an off-center displacement of magnetic Mn2+ ions. The present study shows that Mn3Ta2O8 is a rare material that exhibits both ME and antiferroelectric-like transitions. Thus, Mn3Ta2O8 may provide an opportunity to investigate the physics associated with complicated interactions between magnetic (spin) and electric dipole degrees of freedom.

3.
Nat Commun ; 12(1): 5559, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548484

RESUMEN

Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeycomb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTO's quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (⊥ b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.

4.
Nat Commun ; 12(1): 5199, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465792

RESUMEN

A triplon refers to a fictitious particle that carries angular momentum S=1 corresponding to the elementary excitation in a broad class of quantum dimerized spin systems. Such systems without magnetic order have long been studied as a testing ground for quantum properties of spins. Although triplons have been found to play a central role in thermal and magnetic properties in dimerized magnets with singlet correlation, a spin angular momentum flow carried by triplons, a triplon current, has not been detected yet. Here we report spin Seebeck effects induced by a triplon current: triplon spin Seebeck effect, using a spin-Peierls system CuGeO3. The result shows that the heating-driven triplon transport induces spin current whose sign is positive, opposite to the spin-wave cases in magnets. The triplon spin Seebeck effect persists far below the spin-Peierls transition temperature, being consistent with a theoretical calculation for triplon spin Seebeck effects.

5.
J Phys Condens Matter ; 34(4)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34517360

RESUMEN

Finding new materials with antiferromagnetic (AFM) Kitaev interaction is an urgent issue for quantum magnetism research. We conclude that Na3Co2SbO6and Na2Co2TeO6are new honeycomb cobalt-based systems with AFM Kitaev interaction by carrying out inelastic neutron scattering experiments and subsequent analysis. The spin-orbit excitons observed at 20-28 meV in both compounds strongly support the idea that Co2+ions of both compounds have a spin-orbital entangledJeff= 1/2 state. Furthermore, we found that a generalized Kitaev-Heisenberg Hamiltonian can describe the spin-wave excitations of both compounds with additional 3rd nearest-neighbor interaction. Our best-fit parameters show significant AFM Kitaev terms and off-diagonal symmetric anisotropy terms of a similar magnitude in both compounds. We also found a strong magnon-damping effect at the higher energy part of the spin waves, entirely consistent with observations in other Kitaev magnets. Our work suggests Na3Co2SbO6and Na2Co2TeO6as rare examples of the AFM Kitaev magnets based on the systematic studies of the spin waves and analysis.

6.
Nat Commun ; 12(1): 4382, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282147

RESUMEN

Dimensionality is a critical factor in determining the properties of solids and is an apparent built-in character of the crystal structure. However, it can be an emergent and tunable property in geometrically frustrated spin systems. Here, we study the spin dynamics of the tetrahedral cluster antiferromagnet, pharmacosiderite, via muon spin resonance and neutron scattering. We find that the spin correlation exhibits a two-dimensional characteristic despite the isotropic connectivity of tetrahedral clusters made of spin 5/2 Fe3+ ions in the three-dimensional cubic crystal, which we ascribe to two-dimensionalisation by geometrical frustration based on spin wave calculations. Moreover, we suggest that even one-dimensionalisation occurs in the decoupled layers, generating low-energy and one-dimensional excitation modes, causing large spin fluctuation in the classical spin system. Pharmacosiderite facilitates studying the emergence of low-dimensionality and manipulating anisotropic responses arising from the dimensionality using an external magnetic field.

7.
Nat Commun ; 11(1): 3429, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647219

RESUMEN

Observation of a quantum spin liquid (QSL) state is one of the most important goals in condensed-matter physics, as well as the development of new spintronic devices that support next-generation industries. The QSL in two dimensional quantum spin systems is expected to be due to geometrical magnetic frustration, and thus a kagome-based lattice is the most probable playground for QSL. Here, we report the first experimental results of the QSL state on a square-kagome quantum antiferromagnet, KCu6AlBiO4(SO4)5Cl. Comprehensive experimental studies via magnetic susceptibility, magnetisation, heat capacity, muon spin relaxation (µSR), and inelastic neutron scattering (INS) measurements reveal the formation of a gapless QSL at very low temperatures close to the ground state. The QSL behavior cannot be explained fully by a frustrated Heisenberg model with nearest-neighbor exchange interactions, providing a theoretical challenge to unveil the nature of the QSL state.

8.
Nat Commun ; 11(1): 3142, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561856

RESUMEN

Chemical doping is one of the most important strategies for tuning electrical properties of semiconductors, particularly thermoelectric materials. Generally, the main role of chemical doping lies in optimizing the carrier concentration, but there can potentially be other important effects. Here, we show that chemical doping plays multiple roles for both electron and phonon transport properties in half-Heusler thermoelectric materials. With ZrNiSn-based half-Heusler materials as an example, we use high-quality single and polycrystalline crystals, various probes, including electrical transport measurements, inelastic neutron scattering measurement, and first-principles calculations, to investigate the underlying electron-phonon interaction. We find that chemical doping brings strong screening effects to ionized impurities, grain boundary, and polar optical phonon scattering, but has negligible influence on lattice thermal conductivity. Furthermore, it is possible to establish a carrier scattering phase diagram, which can be used to select reasonable strategies for optimization of the thermoelectric performance.

9.
Sci Adv ; 5(10): eaaw5639, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31667340

RESUMEN

The investigation of materials that exhibit quantum phase transition provides valuable insights into fundamental problems in physics. We present neutron scattering under pressure in a triangular-lattice antiferromagnet that has a quantum disorder in the low-pressure phase and a noncollinear structure in the high-pressure phase. The neutron spectrum continuously evolves through critical pressure; a single mode in the disordered state becomes soft with the pressure and it splits into gapless and gapped modes in the ordered phase. Extended spin-wave theory reveals that the longitudinal and transverse fluctuations of spins are hybridized in the modes because of noncollinearity, and previously unidentified magnetic excitations are formed. We report a new hybridization of the phase and amplitude fluctuations of the order parameter near a quantum critical point in a spontaneously symmetry-broken state.

10.
Phys Rev Lett ; 123(11): 117202, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31573271

RESUMEN

Investigating exotic magnetic materials with spintronic techniques is effective at advancing magnetism as well as spintronics. In this work, we report unusual field-induced suppression of the spin Seebeck effect (SSE) in a quasi-one-dimensional frustrated spin-1/2 magnet LiCuVO_{4}, known to exhibit spin-nematic correlation in a wide range of external magnetic field B. The suppression takes place above |B|≳2 T in spite of the B-linear isothermal magnetization curves in the same B range. The result can be attributed to the growth of the spin-nematic correlation while increasing B. The correlation stabilizes magnon pairs carrying spin 2, thereby suppressing the interfacial spin injection of SSE by preventing the spin-1 exchange between single magnons and conduction electrons at the interface. This interpretation is supported by integrating thermodynamic measurements and theoretical analysis on the SSE.

11.
Phys Rev Lett ; 120(13): 137001, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694229

RESUMEN

We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca_{0.82}La_{0.18}Fe_{0.96}Ni_{0.04}As_{2} with bulk superconductivity below T_{c}=22 K. A two-dimensional spin resonance mode is found around E=11 meV, where the resonance energy is almost temperature independent and linearly scales with T_{c} along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any L modulations. Because of the unique monoclinic structure with additional zigzag arsenic chains, the As 4p orbitals contribute to a three-dimensional hole pocket around the Γ point and an extra electron pocket at the X point. Our results suggest that the energy and momentum distribution of the spin resonance does not directly respond to the k_{z} dependence of the fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.

12.
Oncotarget ; 9(21): 15591-15605, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29643995

RESUMEN

N,N'-Bis(salicylidene)ethylenediamine iron (Fe(Salen)) is an anti-cancer agent with intrinsic magnetic property. Here, we covalently linked Fe(Salen) to paclitaxel (PTX), a widely used anti-cancer drug, to obtain a magnetized paclitaxel conjugate (M-PTX), which exhibited magnetic characteristics for magnet-guided drug delivery and MRI visualization. M-PTX increased apoptosis and G2/M arrest of cultured human oral cancer cell lines in the same manner as PTX. Furthermore, marked contrast intensity was obtained in magnetic resonance imaging (MRI) of M-PTX. In a mouse oral cancer model, a permanent magnet placed on the body surface adjacent to the tumor resulted in distinct accumulation of M-PTX, and the anti-cancer effect was greater than that of M-PTX without the magnet. We believe that this strategy may improve future cancer chemotherapy by providing conventional anti-cancer drugs with novel functionalities such as magnet-guided drug delivery or MRI-based visualization/quantitation of drug distribution.

13.
Inorg Chem ; 57(9): 5089-5095, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29630373

RESUMEN

For a symmetry-consistent theoretical description of the ferroelectric phase of Ba2MnGe2O7 melilite compound, a precise knowledge of its crystal structure is a prerequisite. Here we report results of single-crystal neutron diffraction experiments on Ba2MnGe2O7 at room (300 K) and low (10 K) temperatures. The structural model based on the tetragonal space group P4̅21 m describes the Ba2MnGe2O7 symmetry both at room and low temperatures. We found reflections forbidden in the typical P4̅21 m melilite-type structure. A comparison of the experimental data collected by means of both thermal and cold neutrons with simulated multiple diffraction patterns allows us to unambiguously demonstrate that forbidden peaks originate from multiple diffraction (Renninger effect) rather than from real symmetry lowering. The precise structural parameters at 300 and 10 K are presented for the first time and compared with those of other magnetoelectric melilite-type germanates.

14.
Chem Commun (Camb) ; 53(27): 3826-3829, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28322390

RESUMEN

A new square-planar zinc oxyhalide, Sr2ZnO2Cl2, was successfully synthesized using a high-pressure method. Absorption spectroscopy revealed an indirect band gap of 3.66 eV. Electronic structure calculations indicated a strong hybridization between Zn 3dx2-y2 and O 2p orbitals, which is distinct from tetrahedrally coordinated ZnO.

15.
Sci Rep ; 7: 42783, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28218292

RESUMEN

We previously reported that µ-oxo N,N'-bis(salicylidene)ethylenediamine iron [Fe(Salen)], a magnetic organic compound, has direct anti-tumor activity, and generates heat in an alternating magnetic field (AMF). We showed that Fe(Salen) nanoparticles are useful for combined hyperthermia-chemotherapy of tongue cancer. Here, we have examined the effect of Fe(Salen) on human glioblastoma (GB). Fe(Salen) showed in vitro anti-tumor activity towards several human GB cell lines. It inhibited cell proliferation, and its apoptosis-inducing activity was greater than that of clinically used drugs. Fe(Salen) also showed in vivo anti-tumor activity in the mouse brain. We evaluated the drug distribution and systemic side effects of intracerebrally injected Fe(Salen) nanoparticles in rats. Further, to examine whether hyperthermia, which was induced by exposing Fe(Salen) nanoparticles to AMF, enhanced the intrinsic anti-tumor effect of Fe(Salen), we used a mouse model grafted with U251 cells on the left leg. Fe(Salen), BCNU, or normal saline was injected into the tumor in the presence or absence of AMF exposure. The combination of Fe(Salen) injection and AMF exposure showed a greater anti-tumor effect than did either Fe(Salen) or BCNU alone. Our results indicate that hyperthermia and chemotherapy with single-drug nanoparticles could be done for GB treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/terapia , Etilenodiaminas/administración & dosificación , Glioblastoma/terapia , Hipertermia Inducida/métodos , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Etilenodiaminas/farmacología , Humanos , Ratones , Nanopartículas , Ratas , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Sci Rep ; 5: 9194, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25779357

RESUMEN

Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., µ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Etilenodiaminas/química , Hierro/química , Nanopartículas de Magnetita/química , Ratones , Estructura Molecular , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...