Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Sci Rep ; 14(1): 11253, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755333

RESUMEN

Accelerator-based boron neutron capture therapy (BNCT) systems employing a solid-state lithium target indicated the reduction of neutron flux over the lifetime of a target, and its reduction could represent the neutron flux model. This study proposes a novel compensatory approach for delivering the required neutron fluence and validates its clinical applicability. The proposed approach relies on the neutron flux model and the cumulative sum of real-time measurements of proton charges. The accuracy of delivering the required neutron fluence for BNCT using the proposed approach was examined in five Li targets. With the proposed approach, the required neutron fluence could be delivered within 3.0%, and within 1.0% in most cases. However, those without using the proposed approach exceeded 3.0% in some cases. The proposed approach can consider the neutron flux reduction adequately and decrease the effect of uncertainty in neutron measurements. Therefore, the proposed approach can improve the accuracy of delivering the required fluence for BNCT even if a neutron flux reduction is expected during treatment and over the lifetime of the Li target. Additionally, by adequately revising the approach, it may apply to other type of BNCT systems employing a Li target, furthering research in this direction.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Litio , Neutrones , Terapia por Captura de Neutrón de Boro/métodos , Litio/química , Humanos , Aceleradores de Partículas , Dosificación Radioterapéutica
2.
PLoS One ; 19(4): e0302130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625917

RESUMEN

PARP inhibitors have been developed as anti-cancer agents based on synthetic lethality in homologous recombination deficient cancer cells. However, resistance to PARP inhibitors such as olaparib remains a problem in clinical use, and the mechanisms of resistance are not fully understood. To investigate mechanisms of PARP inhibitor resistance, we established a BRCA1 knockout clone derived from the pancreatic cancer MIA PaCa-2 cells, which we termed C1 cells, and subsequently isolated an olaparib-resistant C1/OLA cells. We then performed RNA-sequencing and pathway analysis on olaparib-treated C1 and C1/OLA cells. Our results revealed activation of cell signaling pathway related to NAD+ metabolism in the olaparib-resistant C1/OLA cells, with increased expression of genes encoding the NAD+ biosynthetic enzymes NAMPT and NMNAT2. Moreover, intracellular NAD+ levels were significantly higher in C1/OLA cells than in the non-olaparib-resistant C1 cells. Upregulation of intracellular NAD+ levels by the addition of nicotinamide also induced resistance to olaparib and talazoparib in C1 cells. Taken together, our findings suggest that upregulation of intracellular NAD+ is one of the factors underlying the acquisition of PARP inhibitor resistance.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Piperazinas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , NAD , Línea Celular Tumoral , Antineoplásicos/farmacología , Ftalazinas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteína BRCA1
3.
Curr Issues Mol Biol ; 46(1): 450-460, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38248330

RESUMEN

Developing strategies for the radiosensitization of cancer cells by the inhibition of genes, which harbor low toxicity to normal cells, will be useful for improving cancer radiotherapy. Here, we focused on a ß-site of amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1; ß-secretase, memapsin-2). By functional inhibition of this peptidase by siRNA, it has also recently been shown that the DNA strand break marker, γH2AX foci, increased, suggesting its involvement in DNA damage response. To investigate this possibility, we knocked down BACE1 with siRNA in cancer cell lines, and sensitization to γ-irradiation was examined by a colony formation assay, γH2AX foci and level analysis, and flow cytometry. BACE1 knockdown resulted in the sensitization of HeLa, MDA-MB-231, U2OS, and SAOS cells to γ-irradiation in a diverse range. BACE1 knockdown showed a weak radiosensitization effect in osteosarcoma U2OS cells, which has a normal p53 function. HeLa and SAOS cells, which harbor p53 dysfunction, exhibited a greater level of radiosensitization. These results suggest that BACE1 may be a potential target for the radiosensitization in particular cancer cells.

4.
Biochem Biophys Res Commun ; 692: 149309, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38048727

RESUMEN

Poly (ADP-ribose) glycohydrolase (PARG) is an enzyme that mainly degrades poly (ADP-ribose) (PAR) synthesized by poly (ADP-ribose) polymerase (PARP) family proteins. Although PARG is involved in many biological phenomena, including DNA repair, cell differentiation, and cell death, little is known about the relationship between osteoclast differentiation and PARG. It has also not been clarified whether PARG is a valuable target for therapeutic agents in the excessive activity of osteoclast-related bone diseases such as osteoporosis. In the present study, we examined the effects of PARG inhibitor PDD00017273 on osteoclast differentiation in RANKL-induced RAW264 cells. PDD00017273 induced the accumulation of intracellular PAR and suppressed the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. PDD00017273 also downregulated osteoclast differentiation marker genes such as Trap, cathepsin K (Ctsk), and dendrocyte expressed seven transmembrane protein (Dcstamp) and protein expression of nuclear factor of activated T cells 1 (NFATc1), a master regulator of osteoclast differentiation. Taken together, our findings suggest that dysfunction of PARG suppresses osteoclast differentiation via the PAR accumulation and partial inactivation of the NFATc1.


Asunto(s)
Osteoclastos , Ribosa , Glicósido Hidrolasas/metabolismo , Osteoclastos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Ratones
6.
J Radiat Res ; 64(4): 661-667, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37295954

RESUMEN

This study aimed to quantify the relative biological effectiveness (RBE) for epithermal neutron beam contaminated with fast neutrons in the accelerator-based boron neutron capture therapy (BNCT) system coupled to a solid-state lithium target. The experiments were performed in National Cancer Center Hospital (NCCH), Tokyo, Japan. Neutron irradiation with the system provided by Cancer Intelligence Care Systems (CICS), Inc. was performed. X-ray irradiation, which was assigned as the reference group, was also performed using a medical linear accelerator (LINAC) equipped in NCCH. The four cell lines (SAS, SCCVII, U87-MG and NB1RGB) were utilized to quantify RBE value for the neutron beam. Before both of those irradiations, all cells were collected and dispensed into vials. The doses of 10% cell surviving fraction (SF) (D10) were calculated by LQ model fitting. All cell experiments were conducted in triplicate at least. Because the system provides not only neutrons, but gamma-rays, the contribution from the gamma-rays to the survival fraction were subtracted in this study. D10 value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was 4.26, 4.08, 5.81 and 2.72 Gy, respectively, while that acquired by the X-ray irradiation was 6.34, 7.21, 7.12 and 5.49 Gy, respectively. Comparison of both of the D10 values, RBE value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was calculated as 1.7, 2.2, 1.3 and 2.5, respectively, and the average RBE value was 1.9. This study investigated RBE of the epithermal neutron beam contaminated with fast neutrons in the accelerator-based BNCT system coupled to a solid-state lithium target.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neutrones Rápidos , Litio , Neutrones , Aceleradores de Partículas , Efectividad Biológica Relativa
7.
Cells ; 12(12)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371031

RESUMEN

Boron neutron capture therapy (BNCT) is a selective radiotherapy based on nuclear reaction that occurs when 10B atoms accumulated in cancer cells are irradiated by thermal neutrons, triggering a nuclear fission response leading to cell death. Despite its growing importance in cancer treatment, molecular characterization of its effects is still lacking. In this context, proteomics investigation can be useful to study BNCT effect and identify potential biomarkers. Hence, we performed proteomic analysis with nanoLC-MS/MS (liquid chromatography coupled to tandem mass spectrometry) on extracellular vesicles (EVs) isolated from SAS cultures treated or not with 10B-boronophenylalanine (BPA) and different doses of neutron irradiation, to study the cellular response related to both boron administration and neutrons action. Despite the interference of fetal bovine serum in the medium, we were able to stratify BPA- and BPA+ conditions and to identify EVs-derived proteins characterizing pathways potentially related to a BNCT effect such as apoptosis, DNA repair and inflammatory response. In particular, KLF11, SERPINA1 and SERPINF2 were up-regulated in BPA+, while POLE and SERPINC1 were up-regulated in BPA-. These results provide the first proteomic investigation of EVs treated with BNCT in different conditions and highlight the potentiality of proteomics for improving biomarkers identification and mechanisms understanding of BNCT.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Vesículas Extracelulares , Compuestos de Boro/uso terapéutico , Proteómica , Espectrometría de Masas en Tándem , Terapia por Captura de Neutrón de Boro/métodos , Neutrones
8.
Sci Rep ; 13(1): 7588, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165001

RESUMEN

BCR/ABL1 causes dysregulated cell proliferation and is responsible for chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph1-ALL). In addition to the deregulatory effects of its kinase activity on cell proliferation, BCR/ABL1 induces genomic instability by downregulating BRCA1. PARP inhibitors (PARPi) effectively induce cell death in BRCA-defective cells. Therefore, PARPi are expected to inhibit growth of CML and Ph1-ALL cells showing downregulated expression of BRCA1. Here, we show that PARPi effectively induced cell death in BCR/ABL1 positive cells and suppressed colony forming activity. Prevention of BCR/ABL1-mediated leukemogenesis by PARP inhibition was tested in two in vivo models: wild-type mice that had undergone hematopoietic cell transplantation with BCR/ABL1-transduced cells, and a genetic model constructed by crossing Parp1 knockout mice with BCR/ABL1 transgenic mice. The results showed that a PARPi, olaparib, attenuates BCR/ABL1-mediated leukemogenesis. One possible mechanism underlying PARPi-dependent inhibition of leukemogenesis is increased interferon signaling via activation of the cGAS/STING pathway. This is compatible with the use of interferon as a first-line therapy for CML. Because tyrosine kinase inhibitor (TKI) monotherapy does not completely eradicate leukemic cells in all patients, combined use of PARPi and a TKI is an attractive option that may eradicate CML stem cells.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide , Ratones , Animales , Proteínas de Fusión bcr-abl/metabolismo , Ribosa , Poli(ADP-Ribosa) Polimerasas , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones Transgénicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Interferones/farmacología
9.
Anticancer Agents Med Chem ; 23(12): 1351-1354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959156

RESUMEN

Neuroprotection is one of the hot topics in medicine. Alzheimer's disease, amyotrophic lateral sclerosis, retinal pigment epithelial (RPE) degeneration, and axonal degeneration have been studied for the involvement of NAD depletion. Localized NAD+ depletion could lead to overactivation and crowding of local NAD+ salvage pathways. It has been stated that NAD+ depletion caused by PARPs and PAR cycling has been related to metabolic diseases and cancer. Additionally, it is now acknowledged that SARM1 dependent NAD+ depletion causes axon degeneration. New targeted therapeutics, such as SARM1 inhibitors, and NAD+ salvage drugs will help alleviate the dysfunctions affecting cell life and death in neurodegeneration as well as in metabolic diseases and cancer.


Asunto(s)
Axones , NAD , Humanos , Axones/metabolismo , NAD/metabolismo
10.
Cancer Biother Radiopharm ; 38(3): 173-183, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36154293

RESUMEN

This review discusses the strategies of preclinical studies intended for accelerator-based (AB)-boron neutron capture therapy (BNCT) clinical trials, which were presented at the National Cancer Institute (NCI) Workshop on Neutron Capture Therapy held from April 20 to 22, 2022. Clinical studies of BNCT have been conducted worldwide using reactor neutron sources, with most targeting malignant brain tumors, melanoma, or head and neck cancer. Recently, small accelerator-based neutron sources that can be installed in hospitals have been developed. AB-BNCT clinical trials for recurrent malignant glioma, head and neck cancers, high-grade meningioma, melanoma, and angiosarcoma have all been conducted in Japan. The necessary methods, equipment, and facilities for preclinical studies to evaluate the biological effects of AB-BNCT systems in terms of safety and efficacy are described, with reference to two examples from Japan. The first is the National Cancer Center, which is equipped with a vertical downward neutron beam, and the other is the University of Tsukuba, which has a horizontal neutron beam. The preclinical studies discussed include cell-based assays to evaluate cytotoxicity and genotoxicity, in vivo cytotoxicity and efficacy of BNCT, and radioactivation measurements.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neoplasias Encefálicas , Glioma , Neoplasias de Cabeza y Cuello , Melanoma , Humanos , Terapia por Captura de Neutrón de Boro/métodos , Neoplasias Encefálicas/radioterapia
11.
Cancer Biother Radiopharm ; 38(3): 152-159, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36269655

RESUMEN

Systems biology approach, carried out with high-throughput omics technologies, has become a fundamental aspect of the study of complex diseases like cancer. It can molecularly characterize subjects, physiopathological conditions, and interactions, allowing a precise description, to reach personalized medicine. In particular, proteomics, typically performed with liquid chromatography coupled to mass spectrometry, is a powerful tool for systems biology, giving the possibility to perform diagnosis, patient stratification, and prediction of therapy effects. Boron Neutron Capture Therapy (BNCT) is a selective antitumoral radiotherapy based on a nuclear reaction that occurs when Boron-10 (10B) atoms are irradiated by low-energy thermal neutrons, leading to cell death, thanks to the production of high-energy α particles. Since BNCT is recently becoming an important therapy for the treatment of different types of solid tumors such as gliomas, head and neck cancers, and others, it can take advantage of molecular investigation to improve the understanding of effects and mechanisms and so help its clinical applications. In this context, proteomics can provide a better understanding of mechanisms related to BNCT effect, identify potential biomarkers, and individuate differential responses by specific patients, stratifying responders and nonresponders. Another key aspect of BNCT is the study of new potential 10B carriers to improve the selectivity of Boron delivery to tumors and proteomics can be important in this application, studying the effectiveness of new boron delivery agents, including protein-based carriers, also using computational studies that can investigate new molecules, such as boronated monoclonal antibodies, for improving BNCT.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Glioma , Humanos , Boro , Terapia por Captura de Neutrón de Boro/métodos , Biología de Sistemas , Glioma/tratamiento farmacológico , Compuestos de Boro/uso terapéutico
12.
Cancers (Basel) ; 14(17)2022 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077707

RESUMEN

Poly(ADP-ribose) polymerase (PARP) is involved in DNA repair and chromatin regulation. 5-Aza-2'-deoxycytidine (5-aza-dC) inhibits DNA methyltransferases, induces hypomethylation, blocks DNA replication, and causes DNA single strand breaks (SSBs). As the PARP inhibitor is expected to affect both DNA repair and transcriptional regulations, we investigated the effect of combinational use of PARP inhibitors on cytotoxicity of 5-aza-dC in human cancer cell lines. The combinational treatment of 5-aza-dC and PARP inhibitor PJ-34 exhibited a stronger cytotoxicity compared with their treatment alone in blood cancer HL-60, U937, and colon cancer HCT116 and RKO cells. Treatment with 5-aza-dC but not PJ-34 caused SSBs in HCT116 cell lines. Global genome DNA demethylation was observed after treatment with 5-aza-dC but not with PJ-34. Notably, in microarray analysis, combinational treatment with PJ-34 and 5-aza-dC caused dissimilar broad changes in gene expression profiles compared with their single treatments in both HCT116 and RKO cells. The profiles of reactivation of silenced genes were also different in combination of PJ-34 and 5-aza-dC and their single treatments. The results suggest that the combinational use of 5-aza-dC and PARP inhibitor may be useful by causing distinct transcriptional profile changes.

13.
Int J Mol Sci ; 23(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35563432

RESUMEN

Poly ADP-ribosylation (PARylation) is a post-translational modification catalyzed by poly (ADP-ribose) polymerase (PARP) family proteins such as PARP1. Although PARylation regulates important biological phenomena such as DNA repair, chromatin regulation, and cell death, little is known about the relationship between osteoblast differentiation and the PARylation cycle involving PARP1 and the poly (ADP-ribose)-degrading enzyme poly (ADP-ribose) glycohydrolase (PARG). Here, we examined the effects of PARP inhibitor olaparib, an approved anti-cancer agent, and PARG inhibitor PDD00017273 on osteoblast differentiation. Olaparib decreased alkaline phosphatase (ALP) activity and suppressed mineralized nodule formation evaluated by Alizarin Red S staining in preosteoblastic MC3T3-E1 cells, while PDD00017273 promoted ALP activity and mineralization. Furthermore, PDD00017273 up-regulated the mRNA expression levels of osteocalcin and bone sialoprotein, as osteoblast differentiation markers, and osterix as transcription inducers for osteoblast differentiation, whereas olaparib down-regulated the expression of these genes. These findings suggest that PARG inhibition by PDD00017273 accelerates osteoblast differentiation in MC3T3-E1 cells. Thus, PARG inhibitor administration could provide therapeutic benefits for metabolic bone diseases such as osteoporosis.


Asunto(s)
Poli(ADP-Ribosa) Polimerasas , Ribosa , Adenosina Difosfato , Glicósido Hidrolasas/metabolismo , Osteoblastos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo
14.
Int J Mol Sci ; 23(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563460

RESUMEN

The radiosensitization of tumor cells is one of the promising approaches for enhancing radiation damage to cancer cells and limiting radiation effects on normal tissue. In this study, we performed a comprehensive screening of radiosensitization targets in human lung cancer cell line A549 using an shRNA library and identified apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G: A3G) as a candidate target. APOBEC3G is an innate restriction factor that inhibits HIV-1 infection as a cytidine deaminase. APOBEC3G knockdown with siRNA showed an increased radiosensitivity in several cancer cell lines, including pancreatic cancer MIAPaCa2 cells and lung cancer A549 cells. Cell cycle analysis revealed that APOBEC3G knockdown increased S-phase arrest in MIAPaCa2 and G2/M arrest in A549 cells after γ-irradiation. DNA double-strand break marker γH2AX level was increased in APOBEC3G-knocked-down MIAPaCa2 cells after γ-irradiation. Using a xenograft model of A549 in mice, enhanced radiosensitivity by a combination of X-ray irradiation and APOBEC3G knockdown was observed. These results suggest that the functional inhibition of APOBEC3G sensitizes cancer cells to radiation by attenuating the activation of the DNA repair pathway, suggesting that APOBEC3G could be useful as a target for the radiosensitization of cancer therapy.


Asunto(s)
Desaminasa APOBEC-3G , Rayos gamma , Tolerancia a Radiación , Desaminasa APOBEC-3G/antagonistas & inhibidores , Desaminasa APOBEC-3G/farmacología , Animales , Apoptosis , Línea Celular Tumoral , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Rayos gamma/uso terapéutico , Humanos , Neoplasias Pulmonares/radioterapia , Ratones , Tolerancia a Radiación/genética , Tolerancia a Radiación/fisiología
15.
Cancer ; 128(15): 2949-2957, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35593736

RESUMEN

BACKGROUND: The survival of patients with high-risk, refractory, relapsed, or metastatic solid tumors remains dismal. A poly(ADP-ribose) polymerase (PARP) inhibitor could be effective for the treatment of pediatric solid tumors with defective homologous recombination. METHODS: This open-label, multicenter phase 1 clinical trial evaluated the safety, tolerability, and efficacy of olaparib, a PARP inhibitor, in pediatric patients with refractory solid tumors to recommend a dose for Phase 2 trials. Olaparib (62.5, 125, and 187.5 mg/m2 twice daily) was administered orally every day (1 cycle = 28 days) using a standard 3 + 3 dose-escalation design. Patients aged 3-18 years with recurrent pediatric solid tumors were eligible. Pharmacokinetic and pharmacodynamic analyses were performed. RESULTS: Fifteen patients were enrolled and received olaparib monotherapy, which was well tolerated. The recommended phase 2 dose for daily administration was 187.5 mg/m2 twice daily. Pharmacokinetics were dose proportional. The area under the concentration-time curve from 0 to 12 h and the peak plasma concentration for 187.5 mg/m2 twice daily in children were comparable to previous data obtained in a 200-mg, twice-daily cohort and lower than those in the 300-mg twice-daily cohort in adults. Pharmacodynamic studies demonstrated substantial inhibition of PARP activity. Two partial responses were observed in patients with Wilms tumor and neuroblastoma. CONCLUSIONS: This report is the first clinical trial to describe the use of a PARP inhibitor as monotherapy in children. Olaparib was well tolerated, with preliminary antitumor responses observed in DNA damage response-defective pediatric tumors. LAY SUMMARY: This Phase 1 trial evaluated the efficacy and safety of olaparib in patients with refractory childhood solid tumors. Olaparib was well tolerated, achieving objective response in 2/15 patients. The DNA damage response was attenuated in nearly one-half of advanced neuroblastoma patients, demonstrating the utility of the PARP inhibitor. The results support further investigation of olaparib as a new treatment for DNA damage-response or repair-defective pediatric cancers.


Asunto(s)
Antineoplásicos , Neuroblastoma , Adulto , Antineoplásicos/efectos adversos , Niño , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Ftalazinas/efectos adversos , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Poli(ADP-Ribosa) Polimerasas
16.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408845

RESUMEN

Cancer cells are known to have chromosomal number abnormalities (aneuploidy), a hallmark of malignant tumors. Cancer cells also have an increased number of centrosomes (centrosome amplification). Paradoxically, cancer therapies, including γ-irradiation and some anticancer drugs, are carcinogenic and can induce centrosome amplification and chromosomal aneuploidy. Thus, the processes of carcinogenesis and killing cancer cells might have some mechanisms in common. Previously, we found that the inhibitors of polyADP-ribosylation, a post-translational modification of proteins, caused centrosome amplification. However, the mechanism of action of the inhibitors of polyADP-ribosylation is not fully understood. In this study, we found that an inhibitor of polyADP-ribosylation, 3-aminobenzamide, caused centrosome amplification, as well as aneuploidy of chromosomes in CHO-K1 cells. Moreover, inhibitors of polyADP-ribosylation inhibited AKT phosphorylation, and inhibitors of AKT phosphorylation inhibited polyADP-ribosylation, suggesting the involvement of polyADP-ribosylation in the PI3K/Akt/mTOR signaling pathway for controlling cell proliferation. Our data suggest a possibility for developing drugs that induce centrosome amplification and aneuploidy for therapeutic applications to clinical cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Aneuploidia , Animales , Antineoplásicos/metabolismo , Centrosoma/metabolismo , Inestabilidad Cromosómica , Cromosomas/metabolismo , Cricetinae , Cricetulus , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
17.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269669

RESUMEN

Despite recent advances in treatment, the prognosis of oral cancer remains poor, and prevention of recurrence and metastasis is critical. Olaparib is a PARP1 inhibitor that blocks polyADP-ribosylation, which is involved in the epithelial-mesenchymal transition (EMT) characteristic of tumor recurrence. We explored the potential of olaparib in inhibiting cancer invasion in oral carcinoma using three oral cancer cell lines, HSC-2, Ca9-22, and SAS. Olaparib treatment markedly reduced their proliferation, migration, invasion, and adhesion. Furthermore, qRT-PCR revealed that olaparib inhibited the mRNA expression of markers associated with tumorigenesis and EMT, notably Ki67, Vimentin, ß-catenin, MMP2, MMP9, p53, and integrin α2 and ß1, while E-Cadherin was upregulated. In vivo analysis of tumor xenografts generated by injection of HSC-2 cells into the masseter muscles of mice demonstrated significant inhibition of tumorigenesis and bone invasion by olaparib compared with the control. This was associated with reduced expression of proteins involved in osteoclastogenesis, RANK and RANKL. Moreover, SNAIL and PARP1 were downregulated, while E-cadherin was increased, indicating the effect of olaparib on proteins associated with EMT in this model. Taken together, these findings confirm the effects of olaparib on EMT and bone invasion in oral carcinoma and suggest a new therapeutic strategy for this disease.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Cadherinas/genética , Cadherinas/metabolismo , Carcinogénesis/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Ratones , Neoplasias de la Boca/metabolismo , Invasividad Neoplásica/genética , Ftalazinas , Piperazinas , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
18.
Biology (Basel) ; 11(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35336794

RESUMEN

Boron neutron capture therapy (BNCT) is a non-invasive therapeutic technique for treating malignant tumors, however, methods to evaluate its therapeutic efficacy and adverse reactions are lacking. High mobility group box 1 (HMGB1) is an inflammatory molecule released during cell death. Therefore, we aimed to investigate HMGB1 as a biomarker for BNCT response, by examining the early responses of tumor cells to 10B-boronophenylalanine (BPA)-based BNCT in the Kyoto University Nuclear Reactor. Extracellular HMGB1 release was significantly increased in human squamous carcinoma SAS and melanoma A375 cells 24 h after neutron irradiation but not after γ-irradiation. At 3 days post-BPA-based BNCT irradiation in a SAS xenograft mouse model, plasma HMGB1 levels were higher than those in the non-irradiation control, and HMGB1 was detected in both nuclei and cytoplasm in tumor cells. Additionally, increased plasma HMGB1 levels post-BNCT irradiation were detected even when tumors decreased in size. Collectively, these results indicate that the extracellular HMGB1 release occurs at an early stage and is persistent when tumors are reduced in size; therefore, it is a potential biomarker for evaluating the therapeutic response during BNCT.

19.
Genes Cells ; 27(5): 331-344, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35194903

RESUMEN

Base excision repair (BER) removes damaged bases by generating single-strand breaks (SSBs), gap-filling by DNA polymerase ß (POLß), and resealing SSBs. A base-damaging agent, methyl methanesulfonate (MMS) is widely used to study BER. BER increases cellular tolerance to MMS, anti-cancer base-damaging drugs, temozolomide, carmustine, and lomustine, and to clinical poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib. The poisons stabilize PARP1/SSB complexes, inhibiting access of BER factors to SSBs. PARP1 and XRCC1 collaboratively promote SSB resealing by recruiting POLß to SSBs, but XRCC1-/- cells are much more sensitive to MMS than PARP1-/- cells. We recently report that the PARP1 loss in XRCC1-/- cells restores their MMS tolerance and conclude that XPCC1 facilitates the release of PARP1 from SSBs by maintaining its autoPARylation. We here show that the PARP1 loss in XRCC1-/- cells also restores their tolerance to the three anti-cancer base-damaging drugs, although they and MMS induce different sets of base damage. We reveal the synthetic lethality of the XRCC1-/- mutation, but not POLß-/- , with olaparib and talazoparib, indicating that XRCC1 is a unique BER factor in suppressing toxic PARP1/SSB complex and can suppress even when PARP1 catalysis is inhibited. In conclusion, XRCC1 suppresses the PARP1/SSB complex via PARP1 catalysis-dependent and independent mechanisms.


Asunto(s)
Venenos , Poli(ADP-Ribosa) Polimerasas , Adenosina Difosfato Ribosa , Alquilantes , ADN , Daño del ADN , Reparación del ADN , Metilmetanosulfonato/farmacología , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Temozolomida/farmacología
20.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34639169

RESUMEN

Among the post-translational modifications of proteins, ADP-ribosylation has been studied for over fifty years, and a large set of functions, including DNA repair, transcription, and cell signaling, have been assigned to this post-translational modification (PTM). This review presents an update on the function of a large set of enzyme writers, the readers that are recruited by the modified targets, and the erasers that reverse the modification to the original amino acid residue, removing the covalent bonds formed. In particular, the review provides details on the involvement of the enzymes performing monoADP-ribosylation/polyADP-ribosylation (MAR/PAR) cycling in cancers. Of note, there is potential for the application of the inhibitors developed for cancer also in the therapy of non-oncological diseases such as the protection against oxidative stress, the suppression of inflammatory responses, and the treatment of neurodegenerative diseases. This field of studies is not concluded, since novel enzymes are being discovered at a rapid pace.


Asunto(s)
ADP-Ribosilación , Neoplasias/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Procesamiento Proteico-Postraduccional , Animales , Humanos , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...