RESUMEN
BACKGROUND AND AIMS: Crithmum maritimum is a wild, edible halophyte with large potential as a cash crop for salinized soils. However, the tolerance during seed germination appears to be highly site-specific and contradictory, whereas little is known on salinity tolerance during early seedling growth. This study was aimed at characterizing variation in the responses of germination and early seedling growth in diverse C. maritimum populations along the Iberian Southwest coast. Specifically, we sought to distinguish between direct salinity effects and those influenced by the salinity of maternal environments. METHODS: Physicochemical properties, including salinity of maternal environments, were assessed across diverse habitats. A total of 3480 seeds from 58 mother plants were utilized. Seeds were subjected to germination assays under various salinity treatments (0-500 mM NaCl), with subsequent monitoring of germination parameters. Non-germinated seeds were tested for recovery germination, and viability was assessed using the tetrazolium test. Of germinated seeds, 1160 seedlings were monitored for survival and early growth metrics. General Linear Models were employed to analyze the effects of salinity and maternal environmental influence on germination and early growth. KEY RESULTS: Despite reduced and delayed germination under salinity, seeds showed remarkable tolerance up to 150 mM, surpassing prior reports, with consistent viability up to 500 mM, indicating substantial salinity-induced dormancy. Seedling growth was more sensitive to continued treatment; no plants survived above 150 mM. The salinity experienced by maternal plants had only a marginal effect on germination but significantly contributed to reduce seedling biomass production, both above and below ground. CONCLUSIONS: This study highlights the significance of maternal salinity on early growth in C. maritimum, emphasizing the species' resilience to salt stress during germination and recovery. These insights are crucial for optimizing cultivation techniques and informing research on other halophytes in saline environments.
RESUMEN
Pediatric arteriovenous fistulas (PAVFs) are rare, representing only 7.3-17.2% of all pediatric shunts.1 2 In a number of cases they can lead to life-threatening venous hypertension, hydrocephalus and macrocrania,3 heart failure,1 hemorrhagic stroke,4 5 seizures,3 and cognitive developmental issues.1-3 In selected circumstances, early and aggressive treatment is recommended.We present two cases of single-connection, high-flow PAVFs. Case 1 represents a mid-basilar PAVF treated through a transarterial approach, while case 2 represents a quadrigeminal cistern PAVF treated with several transarterial sessions followed by a final transvenous session. The procedures are shown in video 1neurintsurg;jnis-2024-021955v1/V1F1V1Video 1 Clinical cases demonstrating endovascular treatment of pediatric pial arteriovenous fistulas.
RESUMEN
Sub-mesoscale and mesoscale (i.e., 1-10 km and 10-200 km, respectively) ocean processes are highly relevant for the understanding of global circulation, mixing of water masses and energy exchange between ocean layers. However, the processes happening at these scales are hard to be characterized using direct measurements of temperature and salinity. Direct measurements are obtained from vertical probes and/or autonomous vehicles, which, despite their high vertical resolution, are sparsely located in space and therefore unable to capture spatial details at these scales. Seismic oceanography (SO) data have been successfully used to imaging and characterize the ocean at these spatial scales. These data represent indirect measurements of the ocean temperature and salinity along kilometric transects with high horizontal resolution (i.e., a near-synaptic view of the system under investigation), but lower vertical resolution when compared with direct observations. Despite its complex oceanographic setting, the Madeira Abyssal Plain is still largely uncharacterized due to the lack of direct observations. We show for the first time a comprehensive processing, modelling and interpretation of three 2-D seismic oceanography sections from this region. The data show coherent seismic reflection in space, depth and time and shed light into this oceanographic setting with an unprecedent horizontal resolution. The SO modelling and interpretation are combined with existing direct measurements and a quantitative method to correlate thermohaline staircases interpreted from conductivity-temperature-depth casts and seismic reflections is proposed. The results show the relatively stable presence of thermohaline staircases in simultaneously time and space between 1200 and 2000 m of water depth and their spatial variability and contribute to the generalization of SO in physical oceanography.
RESUMEN
Molecular diagnostic methods to detect and quantify viral RNA in clinical samples rely on the purification of the genetic material prior to reverse transcription polymerase chain reaction (qRT-PCR). Due to the large number of samples processed in clinical laboratories, automation has become a necessity in order to increase method processivity and maximize throughput per unit of time. An attractive option for isolating viral RNA is based on the magnetic solid phase separation procedure (MSPS) using magnetic microparticles. This method offers the advantage over other alternative methods of making it possible to automate the process. In this study, we report the results of the MSPS method based on magnetic microparticles obtained by a simple synthesis process, to purify RNA from oro- and nasopharyngeal swab samples of patients suspected of COVID-19 provided by three diagnostic laboratories located in the Buenos Aires Province, Argentina. Magnetite nanoparticles of Fe3O4 (MNPs) were synthesized by the coprecipitation method and then coated with silica (SiO2) produced by hydrolysis of tetraethyl orthosilicate (TEOS). After preliminary tests on samples from the A549 human lung cell line and swabs, an extraction protocol was developed. The quantity and purity of the RNA obtained were determined by gel electrophoresis, spectrophotometry, and qRT-PCR. Tests on samples from naso- and oropharyngeal swabs were performed in order to validate the method for RNA purification in high-throughput SARS-CoV-2 diagnosis by qRT-PCR. The method was compared to the spin columns method and the automated method using commercial magnetic particles. The results show that the method developed is efficient for RNA extraction from nasal and oropharyngeal swab samples, and also comparable to other extraction methods in terms of sensitivity for SARS-CoV-2 detection. Of note, this procedure and reagents developed locally were intended to overcome the shortage of imported diagnostic supplies as the sudden spread of COVID-19 required unexpected quantities of nucleic acid isolation and diagnostic kits worldwide.
RESUMEN
Animal songs can change within and between populations as the result of different evolutionary processes. When these processes include cultural transmission, the social learning of information or behaviours from conspecifics, songs can undergo rapid evolutions because cultural novelties can emerge more frequently than genetic mutations. Understanding these song variations over large temporal and spatial scales can provide insights into the patterns, drivers and limits of song evolution that can ultimately inform on the species' capacity to adapt to rapidly changing acoustic environments. Here, we analysed changes in fin whale (Balaenoptera physalus) songs recorded over two decades across the central and eastern North Atlantic Ocean. We document a rapid replacement of song INIs (inter-note intervals) over just four singing seasons, that co-occurred with hybrid songs (with both INIs), and a clear geographic gradient in the occurrence of different song INIs during the transition period. We also found gradual changes in INIs and note frequencies over more than a decade with fin whales adopting song changes. These results provide evidence of vocal learning in fin whales and reveal patterns of song evolution that raise questions on the limits of song variation in this species.
Asunto(s)
Ballena de Aleta , Animales , Acústica , Océano Atlántico , Mutación , Estaciones del AñoRESUMEN
Cork is one of the main non-timber forest products in the world. Most of its production is concentrated in the Iberian Peninsula, a climate change hotspot. Climate warming may lead to increased aridification and reduce cork production in that region. However, we still lack assessments of climate-cork relationships across ample geographical and climatic gradients explicitly considering site aridity. We quantified cork growth by measuring cork ring width and related it to climate variables and a drought index using dendrochronology. Four cork oak (Quercus suber) forests located from north eastern Spain to south western Morocco (31.5-41.5° N) and subjected to different aridity levels were sampled. Warm conditions in spring to early summer, when cork is formed, reduced cork width, whereas high precipitation in winter and spring enhanced it. The response of cork to increased water availability in summer peaked (r = 0.89, p = 0.00002) in the most arid and continental site considering 14-month long droughts. A severe drought caused a disproportionate loss of cork production in this site, where for every five-fold decrease in the drought index, the cork-width index declined by a factor of thirteen. Therefore, site aridity determines the responses of cork growth to the soil water availability resulting from accumulated precipitation during winter and spring previous to cork growth and until summer. In general, this cumulative water balance, which is very dependent on temperature and evapotranspiration rate, is critical for cork production, especially in continental, dry sites. The precipitation during the hydrological year can be used as a proxy of cork production in similar sites. Assessments of climate-cork relationships in the western Mediterranean basin could be used as analogues to forecast the impacts of aridification on future cork production.
Asunto(s)
Bosques , Quercus , Temperatura , Europa (Continente) , Sequías , Agua , Quercus/fisiologíaRESUMEN
Many plant species are being threatened by increasingly drought conditions due to current climate change at planetary scale. This global trend is leading to the scientific community to investigate the potential role of local adaptations through intraspecific differences in functional traits that may boost conservation strategies by modulating the plant responses to reduced water availability. We assessed under controlled conditions the effect of four different drought intensities on the survival time and morphological traits of Quercus suber seedlings collected from nine populations covering the complete latitudinal distribution of the species. Functional morphological traits related to biomass allocation and leaf and root display were analyzed. We then related these traits with the survival time after a terminal desiccation, used as a drought-resistance proxy and expressed as survival time without watering. Abundant watering availability allowed seedlings to survive for a longer period compared to drier conditions. Further, all morphological traits differed across watering levels, showing a very plastic response. Acorns from southern latitudes produced very large seedlings compared to those gathered from northern latitudes. However, the larger biomass implied higher evaporative water loss, inducing lower survival of southern populations under extreme drought conditions. We further found a clear trend toward maximizing those traits related with belowground growth (i.e., root surface area, root average diameter and root volume) in southern populations aimed to increase water uptake, overcoming the most limiting factor for plant growth in that area. Our results support that increased root development allow cork oak to maintain its functioning after being subjected to damage caused by reduced water availability, whereas high aerial biomass allocation is a handicap for survival under drought stress conditions. This study identifies drought-resistant populations and morphological traits related to drought resistance, which can be applied to improve restoration actions under a warmer climate.
Asunto(s)
Quercus , Quercus/fisiología , Plantones , Sequías , Agua/fisiología , Adaptación Fisiológica , Hojas de la Planta/fisiologíaRESUMEN
The Ghana Digital Seismic Network (GHDSN) data, with six broadband sensors, operating in southern Ghana for two years (2012-2014). The recorded dataset is processed for simultaneous event detection and phase picking by a Deep Learning (DL) model, the EQTransformer tool. Here, the detected earthquakes consisting of supporting data, waveforms (including P and S arrival phases), and earthquake bulletin are presented. The bulletin includes the 559 arrival times (292 P and 267 S phases) and waveforms of the 73 local earthquakes in SEISAN format. The supporting data encompasses the preliminary crustal velocity models obtained from the joint inversion analysis of the detected hypocentral parameters. These parameters comprised of a 6- layer model of the crustal velocity (Vp and Vp/Vs ratio), incident time sequence, and statistical analysis of the detected earthquakes and hypocentral parameters analyzed and relocated by the updated crustal velocity and graphic representation of them a 3D live figure enlighting the seismogenic depth of the region. This dataset has a unique appeal for earth science specialists to analyze and reprocess the detected waveforms and characterize the seismogenic sources and active faults in Ghana. The metadata and waveforms have been deposited at the Mendeley Data repository [1].
RESUMEN
There is growing interest in the consumption of halophytes due to their excellent nutritional profile and antioxidant properties, and their cultivation offers viable alternatives in the face of irreversible global salinization of soils. Nevertheless, abiotic factors strongly influence their phytochemical composition, and little is known about how growing conditions can produce plants with the best nutritional and functional properties. Crithmum maritimum is an edible halophyte with antioxidant properties and considerable potential for sustainable agriculture in marginal environments. However, it is found naturally in contrasting habitats with variable soil physicochemical properties and the extent to which edaphic factors can influence plant performance, accumulation of phytochemicals and their quality remains unknown. We investigated the influence of soil physicochemical properties (texture, pH, electrical conductivity, organic matter content and mineral element concentrations) on growth and reproductive performance, nutritional traits, and the accumulation of specific metabolites in C. maritimum. Soil, leaf and seed samples were taken from eight C. maritimum populations located on the southern coasts of Spain and Portugal. We found greater vegetative growth and seed production in coarser, sandier soils with lower microelement concentrations. The nutritional traits of leaves varied, with soil organic matter and macronutrient content associated with reduced leaf Na, protein and phenolic (mainly flavonoid) concentrations, whereas soils with lower pH and Fe concentrations, and higher clay content yielded plants with lower leaf Zn concentration and greater accumulation of hydroxycinnamic acids. The nutritional value of the seed oil composition appeared to be enhanced in soils with coarser texture and lower microelement concentrations. The accumulation of specific phenolic compounds in the seed was influenced by a wide range of soil properties including texture, pH and some microelements. These findings will inform the commercial cultivation of C. maritimum, particularly in the economic exploitation of poorly utilized, saline soils.
Asunto(s)
Antioxidantes , Suelo , Antioxidantes/metabolismo , Suelo/química , Plantas Tolerantes a la Sal/metabolismo , Agricultura , Fenoles , FitoquímicosRESUMEN
Increasing air temperatures and decreasing rainfall can alter Mediterranean ecosystems, where summer heat and drought already limit plant regeneration. Manipulative field studies can help to understand and anticipate community responses to climate changes. In a Mediterranean oak wooded pasture, we have investigated the effects of warming (W, via open-top chambers increasing 1.4 °C mean air temperature), reduced rainfall (D, via gutters removing 33% of rainfall) and the combination of both factors (WD) on the winter-annual Geranium dissectum L. We measured reproductive phenology and output, leaf physiology during the reproductive phase, and plant relative abundance. Warming had a positive effect on plant height and little effects on leaf physiology. Rainfall reduction enhanced leaf water use efficiency. However, the most noticeable effects occurred in WD plants, which exhibited lower leaf predawn water potential and earlier flowering phenology in the first year of treatment, and a higher ratio of leaf dark respiration (R) to net CO2 assimilation (Pn) at comparable temperatures in the third year, compared to control plants. Leaf R at ambient temperature was similar across climatic treatments. The relative abundance of G. dissectum decreased by 23% over three years, but similarly across treatments. A short life cycle helps G. dissectum to escape severe late-spring heat and drought stress. Moreover, stomata closure and thermal acclimation of R can attenuate plant stress impact on reproduction. Adaptability of the short-lived annual G. dissectum could mitigate climate change impact on community composition over short periods (e.g. three years); however, a reduction in net carbon gain could eventually affect its reproductive success and persistence in the community.
Asunto(s)
Ecosistema , Pradera , Hojas de la Planta , Cambio Climático , Hojas de la Planta/fisiología , Plantas , Temperatura , AguaRESUMEN
Sustainability and functioning of silvopastoral ecosystems are being threatened by the forecasted warmer and drier environments in the Mediterranean region. Scattered trees of these ecosystems could potentially mitigate the impact of climate change on herbaceous plant community but this issue has not yet tested experimentally. We carried out a field manipulative experiment of increased temperature (+2-3 °C) using Open Top Chambers and rainfall reduction (30%) through rain-exclusion shelters to evaluate how net primary productivity and digestibility respond to climate change over three consecutive years, and to test whether scattered trees could buffer the effects of higher aridity in Mediterranean dehesas. First, we observed that herbaceous communities located beneath tree canopy were less productive (351 g/m2) than in open grassland (493 g/m2) but had a higher digestibility (44% and 41%, respectively), likely promoted by tree shade and the higher soil fertility of this habitat. Second, both habitats responded similarly to climate change in terms of net primary productivity, with a 33% increase under warming and a 13% decrease under reduced rainfall. In contrast, biomass digestibility decreased under increased temperatures (-7.5%), since warming enhanced the fiber and lignin content and decreased the crude protein content of aerial biomass. This warming-induced effect on biomass digestibility only occurred in open grasslands, suggesting a buffering role of trees in mitigating the impact of climate change. Third, warming did not only affect these ecosystem processes in a direct way but also indirectly via changes in plant functional composition. Our findings suggest that climate change will alter both the quantity and quality of pasture production, with expected warmer conditions increasing net primary productivity but at the expense of reducing digestibility. This negative effect of warming on digestibility might be mitigated by scattered trees, highlighting the importance of implementing strategies and suitable management to control tree density in these ecosystems.
Asunto(s)
Cambio Climático , Árboles , Biomasa , Ecosistema , Pradera , Plantas , SueloRESUMEN
Animals use varied acoustic signals that play critical roles in their lives. Understanding the function of these signals may inform about key life-history processes relevant for conservation. In the case of fin whales (Balaenoptera physalus), that produce different call types associated with different behaviours, several hypotheses have emerged regarding call function, but the topic still remains in its infancy. Here, we investigate the potential function of two fin whale vocalizations, the song-forming 20-Hz call and the 40-Hz call, by examining their production in relation to season, year and prey biomass. Our results showed that the production of 20-Hz calls was strongly influenced by season, with a clear peak during the breeding months, and secondarily by year, likely due to changes in whale abundance. These results support the reproductive function of the 20-Hz song used as an acoustic display. Conversely, season and year had no effect on variation in 40-Hz calling rates, but prey biomass did. This is the first study linking 40-Hz call activity to prey biomass, supporting the previously suggested food-associated function of this call. Understanding the functions of animal signals can help identifying functional habitats and predict the negative effects of human activities with important implications for conservation.
Asunto(s)
Ballena de Aleta , Acústica , Animales , Biomasa , Vocalización Animal , BallenasRESUMEN
Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) represents a strong candidate to develop environmental-friendly pesticides against the fall armyworm (Spodoptera frugiperda), a widespread pest that poses a severe threat to different crops around the world. To date, SfMNPV genomic diversity of different isolates has been mainly studied by means of restriction pattern analyses and by sequencing of the egt region. Here, the genomic diversity present inside an isolate of SfMNPV was explored using high-throughput sequencing for the first time. We identified 704 intrahost single nucleotide variants, from which 184 are nonsynonymous mutations distributed among 82 different coding sequences. We detected several structural variants affecting SfMNPV genome, including two previously reported deletions inside the egt region. A comparative analysis between polymorphisms present in different SfMNPV isolates and our intraisolate diversity data suggests that coding regions with higher genetic diversity are associated with oral infectivity or unknown functions. In this context, through molecular evolution studies we provide evidence of diversifying selection acting on sf29, a putative collagenase which could contribute to the oral infectivity of SfMNPV. Overall, our results contribute to deepen our understanding of the coevolution between SfMNPV and the fall armyworm and will be useful to improve the applicability of this virus as a biological control agent.
Asunto(s)
Genoma Viral , Nucleopoliedrovirus/genética , Spodoptera/virología , Animales , Argentina , Larva/genética , Larva/virología , Nucleopoliedrovirus/clasificación , Spodoptera/crecimiento & desarrolloRESUMEN
The interference between the direct path and the sea surface reflection of a signal as measured by a receiver is called Lloyd's Mirror effect (LME). It results in a frequency-dependent interference pattern that can be observed in a spectrogram. LME depends on the receiver depth, signal source depth, signal frequency, and slant range between source and receiver. Knowing three of these parameters a priori, LME can be used to estimate the third parameter, such as source depth. Here, the work in Pereira et al. (2016) was expanded to estimate the depth of a vocalizing fin whale recorded by an ocean-bottom seismometer (OBS). In Pereira et al. (2016), the depth of a vocalizing fin whale was inferred by manually comparing spectrograms of LME transmission loss models with observed LME. This study developed an automated procedure to perform the same task using the LME interference pattern observed in the spectrograms of the hydrophone and the vertical channel of the OBS. The results show that the joint use of the two channels was the best approach to estimate a source depth using LME. LME provides a non-intrusive approach for estimating the depth at which a fin whale was vocalizing.
Asunto(s)
Ballena de Aleta , Acústica , Animales , Vocalización AnimalRESUMEN
Ecologists have long argued that higher functioning in diverse communities arises from the niche differences stabilizing species coexistence and from the fitness differences driving competitive dominance. However, rigorous tests are lacking. We couple field-parameterized models of competition between 10 annual plant species with a biodiversity-functioning experiment under two contrasting environmental conditions, to study how coexistence determinants link to biodiversity effects (selection and complementarity). We find that complementarity effects positively correlate with niche differences and selection effects differences correlate with fitness differences. However, niche differences also contribute to selection effects and fitness differences to complementarity effects. Despite this complexity, communities with an excess of niche differences (where niche differences exceeded those needed for coexistence) produce more biomass and have faster decomposition rates under drought, but do not take up nutrients more rapidly. We provide empirical evidence that the mechanisms determining coexistence correlate with those maximizing ecosystem functioning.
Asunto(s)
Biodiversidad , Biomasa , Ecosistema , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Desarrollo de la Planta , Plantas/clasificación , Dinámica Poblacional , EspañaRESUMEN
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees' phenotypic variability, which is, in turn, affected by long-term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree-level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree-, site-, and drought-related factors and their interactions driving the tree-level resilience to extreme droughts. We used a tree-ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid-elevation and low productivity sites from 1980-1999 to 2000-2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree-level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long-term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.
Asunto(s)
Sequías , Pinus sylvestris , Europa (Continente) , Alemania , España , ÁrbolesRESUMEN
Humanin (HN) is a mitochondrial-derived peptide with cytoprotective effect in many tissues. Administration of HN analogs has been proposed as therapeutic approach for degenerative diseases. Although HN has been shown to protect normal tissues from chemotherapy, its role in tumor pathogenesis is poorly understood. Here, we evaluated the effect of HN on the progression of experimental triple negative breast cancer (TNBC). The meta-analysis of transcriptomic data from The Cancer Genome Atlas indicated that HN and its receptors are expressed in breast cancer specimens. By immunohistochemistry we observed up-regulation of HN in TNBC biopsies when compared to mammary gland sections from healthy donors. Addition of exogenous HN protected TNBC cells from apoptotic stimuli whereas shRNA-mediated HN silencing reduced their viability and enhanced their chemo-sensitivity. Systemic administration of HN in TNBC-bearing mice reduced tumor apoptotic rate, impaired the antitumor and anti-metastatic effect of chemotherapy and stimulated tumor progression, accelerating tumor growth and development of spontaneous lung metastases. These findings suggest that HN may exert pro-tumoral effects and thus, caution should be taken when using exogenous HN to treat degenerative diseases. In addition, our study suggests that HN blockade could constitute a therapeutic strategy to improve the efficacy of chemotherapy in breast cancer.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias de la Mama Triple Negativas/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirugía , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/cirugía , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto JovenRESUMEN
Fin whales were once abundant in the seas to the southwest of Portugal, but whaling activities decreased their numbers considerably. Acoustic data from ocean bottom seismometers provide an opportunity to detect fin whales from their notes, data that would otherwise be logistically challenging and expensive to obtain. Based on inter-note interval and frequency bandwidth, two acoustic patterns produced by fin whales were detected in the study area: pattern 1, described from fin whales in the Mediterranean Sea, and pattern 2, associated with fin whales from the northeast North Atlantic Ocean (NENA). NENA fin whales travel into the western Mediterranean Sea, but the Mediterranean population has not been documented to travel regularly into the NENA. In this study, 11 months of acoustic data recorded southwest of Portugal in the NENA were used to characterize 20-Hz fin whale notes into these patterns. Pattern 2 was the most common and occurred mostly in November-January. Pattern 1 occurred less frequently and mostly in September-December, February and April, which suggested a limited excursion of whales from the Mediterranean Sea. There were also occasions when the two patterns were recorded simultaneously. Results suggest that fin whales from the NENA and Mediterranean Sea might mix in the area during part of the year.
Asunto(s)
Ballena de Aleta , Acústica , Animales , Océano Atlántico , Mar Mediterráneo , PortugalRESUMEN
Abstract The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is an important maize pest. Due to the environmental impact and emergence of resistance caused by chemical pesticides and transgenic events, the use of baculoviruses becomes a safe and useful alternative for its control in integrated pest management strategies. Here we report the identification of a novel isolate of a granulovirus of S. frugiperda native to the central region of Argentina, named SfGV ARG. We observed that larvae infected with SfGV ARG showed a yellowish coloration, swollen body and, in some cases, severe lesions in the last abdominal segments. We confirmed the identity of the isolate by sequencing fragments of the lef-8, lef-9 and granulin genes and by calculating evolutionary distances using the Kimura-2-Parameter model. SfGV ARG DNA restriction pattern allowed to estimate a genome of at least 135 kb.
Resumen La oruga militar tardía, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), es una plaga importante del maíz. Debido al impacto ambiental y a la aparición de resistencia causados por los pesticidas químicos y los eventos transgénicos, el uso de baculovirus resulta una alternativa útil y saludable para su control en estrategias de manejo integrado de plagas. En este trabajo reportamos la identificación de un nuevo aislamiento del granulovirus de la S. frugiperda nativo de la región central de Argentina, SfGV ARG. Se observó que larvas infectadas con SfGV ARG mostraron coloración amarillenta, hinchazón y, en algunos casos, lesiones graves en los últimos segmentos abdominales. Se confirmó la identidad del aislamiento por secuenciación de fragmentos de los genes lef-8, lef-9y granulina, y por cálculo de distancias evolutivas usando el parámetro de Kimura-2. El patrón de restricción generado con el ADN genómico de SfGV ARG permitió estimar un tamaño de genoma de al menos 135 kb.
Asunto(s)
Control Biológico de Vectores/métodos , Spodoptera/parasitología , Granulovirus/aislamiento & purificación , Plaguicidas , Argentina , Baculoviridae/aislamiento & purificación , Plagas AgrícolasRESUMEN
Functional traits are expected to modulate plant competitive dynamics. However, how traits and their plasticity in response to contrasting environments connect with the mechanisms determining species coexistence remains poorly understood. Here, we couple field experiments under two contrasting climatic conditions to a plant population model describing competitive dynamics between 10 annual plant species in order to evaluate how 19 functional traits, covering physiological, morphological and reproductive characteristics, are associated with species' niche and fitness differences. We find a rich diversity of univariate and multidimensional associations, which highlight the primary role of traits related to water- and light-use-efficiency for modulating the determinants of competitive outcomes. Importantly, such traits and their plasticity promote species coexistence across climatic conditions by enhancing stabilizing niche differences and by generating competitive trade-offs between species. Our study represents a significant advance showing how leading dimensions of plant function connect to the mechanisms determining the maintenance of biodiversity.