Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 73: 103191, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762951

RESUMEN

Activation of inflammation is tightly associated with metabolic reprogramming in macrophages. The iron-containing tetrapyrrole heme can induce pro-oxidant and pro-inflammatory effects in murine macrophages, but has been associated with polarization towards an anti-inflammatory phenotype in human macrophages. In the current study, we compared the regulatory responses to heme and the prototypical Toll-like receptor (TLR)4 ligand lipopolysaccharide (LPS) in human and mouse macrophages with a particular focus on alterations of cellular bioenergetics. In human macrophages, bulk RNA-sequencing analysis indicated that heme led to an anti-inflammatory transcriptional profile, whereas LPS induced a classical pro-inflammatory gene response. Co-stimulation of heme with LPS caused opposing regulatory patterns of inflammatory activation and cellular bioenergetics in human and mouse macrophages. Specifically, in LPS-stimulated murine, but not human macrophages, heme led to a marked suppression of oxidative phosphorylation and an up-regulation of glycolysis. The species-specific alterations in cellular bioenergetics and inflammatory responses to heme were critically dependent on the availability of nitric oxide (NO) that is generated in inflammatory mouse, but not human macrophages. Accordingly, studies with an inducible nitric oxide synthase (iNOS) inhibitor in mouse, and a pharmacological NO donor in human macrophages, reveal that NO is responsible for the opposing effects of heme in these cells. Taken together, the current findings indicate that NO is critical for the immunomodulatory role of heme in macrophages.


Asunto(s)
Hemo , Inflamación , Lipopolisacáridos , Macrófagos , Óxido Nítrico , Humanos , Hemo/metabolismo , Animales , Óxido Nítrico/metabolismo , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Lipopolisacáridos/farmacología , Inflamación/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Fosforilación Oxidativa/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos
2.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628828

RESUMEN

Acid sphingomyelinase deficiency (ASMD) or Niemann-Pick disease type A (NPA), type B (NPB) and type A/B (NPA/B), is a rare lysosomal storage disease characterized by progressive accumulation of sphingomyelin (SM) in the liver, lungs, bone marrow and, in severe cases, neurons. A disease model was established by generating liver organoids from a NPB patient carrying the p.Arg610del variant in the SMPD1 gene. Liver organoids were characterized by transcriptomic and lipidomic analysis. We observed altered lipid homeostasis in the patient-derived organoids showing the predictable increase in sphingomyelin (SM), together with cholesterol esters (CE) and triacylglycerides (TAG), and a reduction in phosphatidylcholine (PC) and cardiolipins (CL). Analysis of lysosomal gene expression pointed to 24 downregulated genes, including SMPD1, and 26 upregulated genes that reflect the lysosomal stress typical of the disease. Altered genes revealed reduced expression of enzymes that could be involved in the accumulation in the hepatocytes of sphyngoglycolipids and glycoproteins, as well as upregulated genes coding for different glycosidases and cathepsins. Lipidic and transcriptome changes support the use of hepatic organoids as ideal models for ASMD investigation.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedades de Niemann-Pick , Humanos , Enfermedad de Niemann-Pick Tipo A/genética , Esfingomielinas , Hígado , Expresión Génica
3.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37569847

RESUMEN

Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene.


Asunto(s)
Deficiencia de alfa 1-Antitripsina , alfa 1-Antitripsina , Humanos , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/complicaciones , Lípidos , Cirrosis Hepática/etiología , Organoides , alfa 1-Antitripsina/genética
4.
Biomedicines ; 11(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37509601

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a type of steatosis commonly associated with obesity, dyslipidemia, hypertension, and diabetes. Other diseases such as inherited alpha-1 antitrypsin deficiency (AATD) have also been related to the development of liver steatosis. The primary reasons leading to hepatic lipid deposits can be genetic and epigenetic, and the outcomes range from benign steatosis to liver failure, as well as to extrahepatic diseases. Progressive hepatocellular damage and dysregulated systemic immune responses can affect extrahepatic organs, specifically the heart and lungs. In this review, we discuss the similarities and differences between the molecular pathways of NAFLD and AATD, and the putative value of hepatic organoids as novel models to investigate the physio pathological mechanisms of liver steatosis.

5.
J Pers Med ; 12(6)2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35743666

RESUMEN

Relapsed and refractory (R/r) disease in paediatric acute leukaemia remains the first reason for treatment failure. Advances in molecular characterisation can ameliorate the identification of genetic biomarkers treatment strategies for this disease, especially in high-risk patients. The purpose of this study was to analyse a cohort of R/r children diagnosed with acute lymphoblastic (ALL) or myeloid (AML) leukaemia in order to offer them a targeted treatment if available. Advanced molecular characterisation of 26 patients diagnosed with R/r disease was performed using NGS, MLPA, and RT-qPCR. The clinical relevance of the identified alterations was discussed in a multidisciplinary molecular tumour board (MTB). A total of 18 (69.2%) patients were diagnosed with B-ALL, 4 (15.4%) with T-ALL, 3 (11.5%) with AML and 1 patient (3.8%) with a mixed-phenotype acute leukaemia (MPL). Most of the patients had relapsed disease (88%) at the time of sample collection. A total of 17 patients (65.4%) were found to be carriers of a druggable molecular alteration, 8 of whom (47%) received targeted therapy, 7 (87.5%) of them in addition to hematopoietic stem cell transplantation (HSCT). Treatment response and disease control were achieved in 4 patients (50%). In conclusion, advanced molecular characterisation and MTB can improve treatment and outcome in paediatric R/r acute leukaemias.

7.
Cancers (Basel) ; 13(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540698

RESUMEN

Natural killer (NK) cells represent promising tools for cancer immunotherapy. We report the optimization of an NK cell activation-expansion process and its validation on clinical-scale. METHODS: RPMI-1640, stem cell growth medium (SCGM), NK MACS and TexMACS were used as culture mediums. Activated and expanded NK cells (NKAE) were obtained by coculturing total peripheral blood mononuclear cells (PBMC) or CD45RA+ cells with irradiated K562mbIL15-41BBL or K562mbIL21-41BBL. Fold increase, NK cell purity, activation status, cytotoxicity and transcriptome profile were analyzed. Clinical-grade NKAE cells were manufactured in CliniMACS Prodigy. RESULTS: NK MACS and TexMACs achieved the highest NK cell purity and lowest T cell contamination. Obtaining NKAE cells from CD45RA+ cells was feasible although PBMC yielded higher total cell numbers and NK cell purity than CD45RA+ cells. The highest fold expansion and NK purity were achieved by using PBMC and K562mbIL21-41BBL cells. However, no differences in activation and cytotoxicity were found when using either NK cell source or activating cell line. Transcriptome profile showed to be different between basal NK cells and NKAE cells expanded with K562mbIL21-41BBL or K562mbIL15-41BBL. Clinical-grade manufactured NKAE cells complied with the specifications from the Spanish Regulatory Agency. CONCLUSIONS: GMP-grade NK cells for clinical use can be obtained by using different starting cells and aAPC.

8.
Arch Bronconeumol ; 57(7): 457-463, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35698951

RESUMEN

INTRODUCTION: Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS: Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS: Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION: Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.


Asunto(s)
Enfermedades Pulmonares , MicroARNs , Deficiencia de alfa 1-Antitripsina , alfa 1-Antitripsina , Regiones no Traducidas 3' , Humanos , Inflamación/genética , Pulmón , Enfermedades Pulmonares/genética , MicroARNs/genética , alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/genética
9.
Am J Respir Cell Mol Biol ; 63(4): 444-451, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32515985

RESUMEN

Alpha-1 antitrypsin deficiency (AATD) is an inherited condition characterized by reduced levels of serum AAT due to mutations in the SERPINA1 (Serpin family A member 1) gene. The Pi*S (Glu264Val) is one of the most frequent deficient alleles of AATD, showing high incidence in the Iberian Peninsula. Herein, we describe two new alleles carrying an S mutation but producing a null phenotype: QOVigo and QOAachen. The new alleles were identified by sequencing the SERPINA1 gene in three patients who had lower AAT serum levels than expected for the initial genotype. These alleles are the result of combined mutations in cis in a PI*S allele. Sequencing detected the S mutation in cis with Tyr138Cys (S+Tyr138Cys) in two patients, whereas a third one had the S mutation in cis with Pro391Thr variant (S+Pro391Thr). When expressed in a cellular model, these variants caused strong AAT polymerization and very low AAT secretion to almost undetectable levels. The isoelectric focusing method for plasma AAT phenotyping did not show AAT protein encoded by the novel mutant alleles, behaving as null. We called these alleles PI*S-plus because the S variant was phased with another variant conferring more aggressive characteristics to the allele. The current data demonstrate that the clinical variability observed in AATD can be explained by additional genetic variation, such as dual cis-acting variants in the SERPINA1 gene. The possible existence of other unrevealed variants combined in the PI*S alleles should be considered to improve the genetic diagnosis of the patients.


Asunto(s)
Mutación/genética , Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Adulto , Alelos , Análisis Mutacional de ADN/métodos , Femenino , Frecuencia de los Genes/genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo
10.
Artículo en Inglés, Español | MEDLINE | ID: mdl-32439252

RESUMEN

INTRODUCTION: Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS: Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS: Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION: Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.

11.
Hepatol Int ; 14(1): 127-137, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31832977

RESUMEN

BACKGROUND AND AIMS: Alpha-1 antitrypsin (AAT) is a product of SERPINA1 gene mainly expressed by hepatocytes. Clinically relevant mutations in the SERPINA1 gene, such as Z (Glu342Lys), results in an expression of misfolded AAT protein having high propensity to polymerize, accumulate in hepatocytes and thus to enhance a risk for hepatocyte damage and subsequent liver disease. So far, the relationship between the Z-AAT accumulation and liver cell damage remains not completely understood. We present three-dimensional organoid culture systems, as a novel tool for modeling Z-AAT-related liver diseases. METHODS: We have established liver organoids from liver biopsies of patients with homozygous (ZZ) and heterozygous (MZ) deficiency and normal (MM) genotypes of AAT. The features of these organoid models were characterized by analyzing AAT protein secretion and intracellular aggregation in MZ and ZZ genotypes as well as SERPINA1 expression in differentiated cultures. RESULTS: Transcriptional analysis of differentiated organoid cultures by RNA-Seq showed hepatocyte-specific gene expression profile. Genes, such as ALB, APOB, CYP3A4 and SERPINA1, were validated and confirmed through quantitative-PCR analysis. The organoids from MZ and ZZ cases showed intracellular aggregation and lower secretion of AAT protein, and lower expression of ALB and APOB, as typically seen in hepatocytes from Z-AAT deficiency patients. Furthermore, organoids responded to external stimulus. Treatment with oncostatin M, a well-known inducer of SERPINA1, increased expression of the full-length transcripts (AAT-1C) as well as the short transcript of AAT (AAT-ST1C4). CONCLUSIONS: Liver organoid model recapitulates the key features of Z-AAT deficiency and provides a useful tool for disease modeling.


Asunto(s)
Cirrosis Hepática , Modelos Teóricos , Organoides , Deficiencia de alfa 1-Antitripsina , alfa 1-Antitripsina/genética , Humanos
12.
Am J Respir Cell Mol Biol ; 58(6): 706-716, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29232161

RESUMEN

The SERPINA1 gene is highly polymorphic, with more than 100 variants described in databases. SERPINA1 encodes the alpha-1 antitrypsin (AAT) protein, and severe deficiency of AAT is a major contributor to pulmonary emphysema and liver diseases. In Spanish patients with AAT deficiency, we identified seven new variants of the SERPINA1 gene involving amino acid substitutions in different exons: PiSDonosti (S+Ser14Phe), PiTijarafe (Ile50Asn), PiSevilla (Ala58Asp), PiCadiz (Glu151Lys), PiTarragona (Phe227Cys), PiPuerto Real (Thr249Ala), and PiValencia (Lys328Glu). We examined the characteristics of these variants and the putative association with the disease. Mutant proteins were overexpressed in HEK293T cells, and AAT expression, polymerization, degradation, and secretion, as well as antielastase activity, were analyzed by periodic acid-Schiff staining, Western blotting, pulse-chase, and elastase inhibition assays. When overexpressed, S+S14F, I50N, A58D, F227C, and T249A variants formed intracellular polymers and did not secrete AAT protein. Both the E151K and K328E variants secreted AAT protein and did not form polymers, although K328E showed intracellular retention and reduced antielastase activity. We conclude that deficient variants may be more frequent than previously thought and that their discovery is possible only by the complete sequencing of the gene and subsequent functional characterization. Better knowledge of SERPINA1 variants would improve diagnosis and management of individuals with AAT deficiency.


Asunto(s)
Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Adulto , Anciano , Femenino , Frecuencia de los Genes , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Estabilidad Proteica , Proteolisis , alfa 1-Antitripsina/química
13.
PLoS One ; 12(1): e0170533, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28107454

RESUMEN

Human SERPINA1 gene is located on chromosome 14q31-32.3 and is organized into three (IA, IB, and IC) non-coding and four (II, III, IV, V) coding exons. This gene produces α1-antitrypsin (A1AT), a prototypical member of the serpin superfamily of proteins. We demonstrate that human peripheral blood leukocytes express not only a product corresponding to the transcript coding for the full-length A1AT protein but also two short transcripts (ST1C4 and ST1C5) of A1AT. In silico sequence analysis revealed that the last exon of the short transcripts contains an Open Reading Frame (ORF) and thus putatively can produce peptides. We found ST1C4 expression across different human tissues whereas ST1C5 was mainly restricted to leukocytes, specifically neutrophils. A high up-regulation (10-fold) of short transcripts was observed in isolated human blood neutrophils after activation with lipopolysaccharide. Parallel analyses by liquid chromatography-mass spectrometry identified peptides corresponding to C-terminal region of A1AT in supernatants of activated but not naïve neutrophils. Herein we report for the first time a tissue specific expression and regulation of short transcripts of SERPINA1 gene, and the presence of C-terminal peptides in supernatants from activated neutrophils, in vitro. This gives a novel insight into the studies on the transcription of SERPINA1 gene.


Asunto(s)
alfa 1-Antitripsina/genética , Simulación por Computador , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Sistemas de Lectura Abierta/genética , Reacción en Cadena de la Polimerasa
14.
ERJ Open Res ; 2(2)2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27730187

RESUMEN

Recurrent infections of the upper airways in early life may be a warning sign of inherited α1-antitrypsin deficiency http://ow.ly/iJsF300kbyV.

16.
Oncotarget ; 7(15): 20068-79, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26933805

RESUMEN

Emerging evidence suggests that BRCA1 pathway contributes to the behavior of sporadic triple negative breast cancer (TNBC), but little is known about the mechanisms underlying this association. Considering the central role that microRNAs (miRNAs) play in gene expression regulation, the aim of this study was to identify miRNAs specifically deregulated in TNBC and investigate their involvement in BRCA1 regulation. Using locked nucleic acid (LNA)-based microarrays, expression levels of 1919 miRNAs were measured in paraffin-embedded tissues from 122 breast tumors and 11 healthy breast tissue samples. Differential miRNA expression was explored among the main subtypes of breast cancer, and 105 miRNAs were identified as specific for triple negative tumors. In silico prediction revealed that miR-498 and miR-187-5p target BRCA1, and these results were confirmed by luciferase reporter assay. While miR-187-5p was found overexpressed in a luminal B cell line, miR-498 was highly expressed in a triple negative cell line, Hs578T, and its expression was negatively correlated with the levels of BRCA1. We functionally demonstrated that miR-498 inhibits BRCA1 in breast cancer cell lines, and showed that inhibition of miR-498 led to reduced proliferation in the triple negative cell line Hs578T. Our results indicate that miR-498 regulates BRCA1 expression in breast cancer and its overexpression could contribute to the pathogenesis of sporadic TNBC via BRCA1 downregulation.


Asunto(s)
Proteína BRCA1/metabolismo , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/genética , Apoptosis , Proteína BRCA1/genética , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
17.
J Transl Med ; 13: 211, 2015 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-26141700

RESUMEN

BACKGROUND: SERPINA1 is the gene for alpha-1 antitrypsin (AAT), an acute phase protein with anti-protease and immunoregulatory activities. Mutations in SERPINA1 gene cause AAT deficiency and predispose individuals to early-onset emphysema and liver diseases. Expression of the SERPINA1 gene is regulated by different promoters and alternative splicing events among non-coding exons 1A, 1B and 1C. METHODS: We have developed three quantitative PCR (QT-PCR) assays (1A, 1B and 1C). These assays were applied for the analysis of SERPINA1 alternative transcripts in: (1) 16 human tissues and (2) peripheral blood leukocytes from 33 subjects with AAT mutations and 7 controls. RESULTS: Tissue-specific expression was found for the SERPINA1 transcripts. The 1A transcripts were mainly expressed in leukocytes and lung tissue while those detected with the 1B assay were highly restricted to leukocytes. Only 1B transcripts significantly correlated with serum AAT levels. The 1C transcripts were specifically found in lung, liver, kidney and pancreas. Furthermore, the expression of transcripts was related to AAT genotypes. While deficient variants of AAT had no pronounced effect on the transcript expression, null alleles were associated with significant reduction of different transcripts. CONCLUSIONS: The possibility to discriminate between SERPINA1 alternative splicing products will help us to understand better the regulation of SERPINA1 gene and its association with SERPINA1 mutations-related diseases.


Asunto(s)
Empalme Alternativo/genética , Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Alelos , Humanos , Leucocitos/metabolismo , Mutación/genética , Especificidad de Órganos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética , alfa 1-Antitripsina/sangre , Deficiencia de alfa 1-Antitripsina/sangre
18.
Clin Chem ; 61(8): 1098-106, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26056355

RESUMEN

BACKGROUND: The identification of novel biomarkers for early breast cancer detection would be a great advance. Because of their role in tumorigenesis and stability in body fluids, microRNAs (miRNAs) are emerging as a promising diagnostic tool. Our aim was to identify miRNAs deregulated in breast tumors and evaluate the potential of circulating miRNAs in breast cancer detection. METHODS: We conducted miRNA expression profiling of 1919 human miRNAs in paraffin-embedded tissue from 122 breast tumors and 11 healthy breast tissue samples. Differential expression analysis was performed, and a microarray classifier was generated. The most relevant miRNAs were analyzed in plasma from 26 healthy individuals and 83 patients with breast cancer (36 before and 47 after treatment) and validated in 116 healthy individuals and 114 patients before treatment. RESULTS: We identified a large number of miRNAs deregulated in breast cancer and generated a 25-miRNA microarray classifier that discriminated breast tumors with high diagnostic sensitivity and specificity. Ten miRNAs were selected for further investigation, of which 4 (miR-505-5p, miR-125b-5p, miR-21-5p, and miR-96-5p) were significantly overexpressed in pretreated patients with breast cancer compared with healthy individuals in 2 different series of plasma. MiR-505-5p and miR-96-5p were the most valuable biomarkers (area under the curve 0.72). Moreover, the expression levels of miR-3656, miR-505-5p, and miR-21-5p were decreased in a group of treated patients. CONCLUSIONS: Circulating miRNAs reflect the presence of breast tumors. The identification of deregulated miRNAs in plasma of patients with breast cancer supports the use of circulating miRNAs as a method for early breast cancer detection.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , MicroARNs/sangre , MicroARNs/genética , Detección Precoz del Cáncer , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Valores de Referencia , Reproducibilidad de los Resultados
19.
PLoS One ; 6(12): e27894, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164218

RESUMEN

Retinitis Pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. RP is the leading cause of visual loss in individuals younger than 60 years, with a prevalence of about 1 in 4000. The molecular genetic diagnosis of autosomal recessive RP (arRP) is challenging due to the large genetic and clinical heterogeneity. Traditional methods for sequencing arRP genes are often laborious and not easily available and a screening technique that enables the rapid detection of the genetic cause would be very helpful in the clinical practice. The goal of this study was to develop and apply microarray-based resequencing technology capable of detecting both known and novel mutations on a single high-throughput platform. Hence, the coding regions and exon/intron boundaries of 16 arRP genes were resequenced using microarrays in 102 Spanish patients with clinical diagnosis of arRP. All the detected variations were confirmed by direct sequencing and potential pathogenicity was assessed by functional predictions and frequency in controls. For validation purposes 4 positive controls for variants consisting of previously identified changes were hybridized on the array. As a result of the screening, we detected 44 variants, of which 15 are very likely pathogenic detected in 14 arRP families (14%). Finally, the design of this array can easily be transformed in an equivalent diagnostic system based on targeted enrichment followed by next generation sequencing.


Asunto(s)
Análisis Mutacional de ADN , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/etnología , Retinitis Pigmentosa/genética , Alelos , Exones , Variación Genética , Genoma , Hispánicos o Latinos , Humanos , Intrones , Lenguaje , Mutación , Mutación Missense , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA