Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 26268, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39487203
2.
Nanoscale ; 15(44): 17972-17986, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37905731

RESUMEN

The intriguing capability of branched glycoprotein filaments to change their hierarchical organization, mediated by external biophysical stimuli, continues to expand understanding of self-assembling strategies that can dynamically rearrange networks at long range. Previous research has explored the corresponding biological, physiological and genetic mechanisms, focusing on protein assemblies within a limited range of nanometric units. Using direct microscopy bio-imaging, we have determined the morpho-structural changes of self-assembled filament networks of the zona pellucida, revealing controlled levels of structured organizations to join distinct evolved stages of the oocyte (Immature, Mature, and Fertilized). This natural soft network reorganizes its corresponding hierarchical network to generate symmetric, asymmetric, and ultimately a state with the lowest asymmetry of the outer surface roughness, and internal pores reversibly changed from elliptical to circular configurations at the corresponding stages. These elusive morpho-structural changes are regulated by the nanostructured polymorphisms of the branched filaments by self-extension/-contraction/-bending processes, modulated by determinate theoretical angles among repetitive filament units. Controlling the nanoscale self-assembling properties by delivering a minimum number of activation bio-signals may be triggered by these specific nanostructured polymorphic organizations. Finally, this research aims to guide this soft biomaterial into a desired state to protect oocytes, eggs, and embryos during development, to favour/prevent the fertilization/polyspermy processes and eventually to impact interactions with bacteria/virus at multiscale levels.


Asunto(s)
Oocitos , Zona Pelúcida , Oocitos/metabolismo , Zona Pelúcida/metabolismo , Fertilización , Citoesqueleto , Glicoproteínas
3.
Macromol Biosci ; 23(11): e2300132, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399840

RESUMEN

Conductive hybrid xanthan gum (XG)-polyaniline (PANI) biocomposites forming 3D structures able to mimic electrical biological functions are synthesized by a strong-acid free medium. In situ aniline oxidative chemical polymerizations are performed in XG water dispersions to produce stable XG-PANI pseudoplastic fluids. XG-PANI composites with 3D architectures are obtained by subsequent freeze-drying processes. The morphological investigation highlights the formation of porous structures; UV-vis and Raman spectroscopy characterizations assess the chemical structure of the produced composites. I-V measurements evidence electrical conductivity of the samples, while electrochemical analyses point out their capability to respond to electric stimuli with electron and ion exchanges in physiological-like environment. Trial tests on prostate cancer cells evaluate biocompatibility of the XG-PANI composite. Obtained results demonstrate that a strong acid-free route produces an electrically conductive and electrochemically active XG-PANI polymer composite. The investigation of charge transport and transfer, as well as of biocompatibility properties of composite materials produced in aqueous environments, brings new perspective for exploitation of such materials in biomedical applications. In particular, the developed strategy can be used to realize biomaterials working as scaffolds that require electrical stimulations for inducing cell growth and communication or for biosignals monitoring and analysis.


Asunto(s)
Materiales Biocompatibles , Polímeros , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Polímeros/química , Conductividad Eléctrica , Compuestos de Anilina/química
4.
J Colloid Interface Sci ; 649: 264-278, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37348346

RESUMEN

HYPOTHESIS: Colloidal gold nanoparticles (AuNPs) functionalised with hydrophilic thiols can be used as drug delivery probes, thanks to their small size and hydrophilic character. AuNPs possess unique properties for their use in nanomedicine, especially in cancer treatment, as diagnostics and therapeutic tools. EXPERIMENTS: Thiol functionalised AuNPs were synthesised and loaded with methotrexate (MTX). Spectroscopic and morphostructural characterisations evidenced the stability of the colloids upon interaction with MTX. Solid state (GISAXS, GIWAXS, FESEM, TEM, FTIR-ATR, XPS) and dispersed phase (UV-Vis, DLS, ζ-potential, NMR, SAXS) experiments allowed to understand structure-properties correlations. The nanoconjugate was tested in vitro (MTT assays) against two neuroblastoma cell lines: SNJKP and IMR5 with overexpressed n-Myc. FINDINGS: Molar drug encapsulation efficiency was optimised to be >70%. A non-covalent interaction between the π system and the carboxylate moiety belonging to MTX and the charged aminic group of one of the thiols was found. The MTX loading slightly decreased the structural order of the system and increased the distance between the AuNPs. Free AuNPs showed no cytotoxicity whereas the AuNPs-MTX nanoconjugate had a more potent effect when compared to free MTX. The active role of AuNPs was evidenced by permeation studies: an improvement on penetration of the drug inside cells was evidenced.


Asunto(s)
Nanopartículas del Metal , Neuroblastoma , Humanos , Metotrexato/química , Oro , Nanoconjugados , Compuestos de Sulfhidrilo/química , Dispersión del Ángulo Pequeño , Nanopartículas del Metal/química , Portadores de Fármacos/química , Difracción de Rayos X , Células MCF-7
5.
Artículo en Inglés | MEDLINE | ID: mdl-36141864

RESUMEN

Microplastics (MPs) are defined as plastic particles smaller than 5 mm. They have been found almost everywhere they have been searched for and recent discoveries have also demonstrated their presence in human placenta, blood, meconium, and breastmilk, but their location and toxicity to humans have not been reported to date. The aim of this study was twofold: 1. To locate MPs within the intra/extracellular compartment in human placenta. 2. To understand whether their presence and location are associated with possible structural changes of cell organelles. Using variable pressure scanning electron microscopy and transmission electron microscopy, MPs have been localized in ten human placentas. In this study, we demonstrated for the first time the presence and localization in the cellular compartment of fragments compatible with MPs in the human placenta and we hypothesized a possible correlation between their presence and important ultrastructural alterations of some intracytoplasmic organelles (mitochondria and endoplasmic reticulum). These alterations have never been reported in normal healthy term pregnancies until today. They could be the result of a prolonged attempt to remove and destroy the plastic particles inside the placental tissue. The presence of virtually indestructible particles in term human placenta could contribute to the activation of pathological traits, such as oxidative stress, apoptosis, and inflammation, characteristic of metabolic disorders underlying obesity, diabetes, and metabolic syndrome and partially accounting for the recent epidemic of non-communicable diseases.


Asunto(s)
Microplásticos , Placenta , Femenino , Humanos , Recién Nacido , Meconio , Microscopía Electrónica de Transmisión , Placenta/metabolismo , Plásticos , Embarazo
6.
Alzheimers Dement ; 18(8): 1498-1510, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34812584

RESUMEN

INTRODUCTION: Intellectual disability, accelerated aging, and early-onset Alzheimer-like neurodegeneration are key brain pathological features of Down syndrome (DS). Although growing research aims at the identification of molecular pathways underlying the aging trajectory of DS population, data on infants and adolescents with DS are missing. METHODS: Neuronal-derived extracellular vesicles (nEVs) were isolated form healthy donors (HDs, n = 17) and DS children (n = 18) from 2 to 17 years of age and nEV content was interrogated for markers of insulin/mTOR pathways. RESULTS: nEVs isolated from DS children were characterized by a significant increase in pIRS1Ser636 , a marker of insulin resistance, and the hyperactivation of the Akt/mTOR/p70S6K axis downstream from IRS1, likely driven by the higher inhibition of Phosphatase and tensin homolog (PTEN). High levels of pGSK3ßSer9 were also found. CONCLUSIONS: The alteration of the insulin-signaling/mTOR pathways represents an early event in DS brain and likely contributes to the cerebral dysfunction and intellectual disability observed in this unique population.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Vesículas Extracelulares , Discapacidad Intelectual , Adolescente , Enfermedad de Alzheimer/patología , Niño , Síndrome de Down/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Lactante , Insulina , Serina-Treonina Quinasas TOR/metabolismo
7.
Pharmaceutics ; 13(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34834195

RESUMEN

The anatomy and physiology of the eye strongly limit the bioavailability of locally administered drugs. The entrapment of therapeutics into nanocarriers represents an effective strategy for the topical treatment of several ocular disorders, as they may protect the embedded molecules, enabling drug residence on the ocular surface and/or its penetration into different ocular compartments. The present work shows the activity of hyaluronan-cholesterol nanogels (NHs) as ocular permeation enhancers. Thanks to their bioadhesive properties, NHs firmly interact with the superficial corneal epithelium, without penetrating the stroma, thus modifying the transcorneal penetration of loaded therapeutics. Ex vivo transcorneal permeation experiments show that the permeation of hydrophilic drugs (i.e., tobramycin and diclofenac sodium salt), loaded in NHs, is significantly enhanced when compared to the free drug solutions. On the other side, the permeation of hydrophobic drugs (i.e., dexamethasone and piroxicam) is strongly dependent on the water solubility of the entrapped molecules. The obtained results suggest that NHs formulations can improve the ocular bioavailability of the instilled drugs by increasing their preocular retention time (hydrophobic drugs) or facilitating their permeation (hydrophilic drugs), thus opening the route for the application of HA-based NHs in the treatment of both anterior and posterior eye segment diseases.

8.
Biology (Basel) ; 10(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073519

RESUMEN

Calcium silicate-based cements have reached excellent levels of performance in endodontics, providing predictable and successful results. To better assess the properties of these bioactive materials, the present study aimed to compare the biocompatibility and antibiofilm properties of ProRoot MTA and Biodentine. Human osteogenic sarcoma (Saos-2) cells were cultured on ProRoot MTA and Biodentine samples or in the presence of both cement extracts. Cell viability assay, measurement of reactive oxygen species (ROS), immunofluorescence analysis, as well as morphological evaluations were conducted. Moreover, Streptococcus mutans was used to assess the biofilm forming ability on ProRoot MTA and Biodentine disks. Finally, both cements were applied in vivo to treat immature permanent teeth affected by reversible pulpitis. Results: Cell viability assay demonstrated that Saos-2 cells had a dose- and time-dependent cytotoxicity to both analyzed cements, although cells exposed to ProRoot MTA showed a better cell vitality than those exposed to Biodentine (p < 0.001). Both cements demonstrated ROS production while this was greater in the case of Biodentine than ProRoot MTA (p < 0.001). Immunofluorescence images of the cytoskeleton and focal adhesions showed no differences in Saos-2 cells grown in the presence of ProRoot MTA eluate; whereas in the Biodentine groups, cells showed a morphology and focal adhesions more similar to that of the control sample, as the eluate concentration decreased. Morphological analysis revealed that Saos-2 cells were more flattened and exhibited better spreading when attached to ProRoot MTA disks than to Biodentine ones. The antibiofilm properties showed a time-dependent powerful inhibition of S. mutans superficial colonization and an antibiofilm effect of both cements. Clinically, complete root formation of the treated elements was achieved using the two studied cements, showing stable results over time. ProRoot MTA and Biodentine was demonstrated to be biocompatible and to possess antibiofilm properties. Their clinical application in vital pulp therapy provided successful outcomes after 2 years of follow-up.

9.
J Hazard Mater ; 411: 125092, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-33858086

RESUMEN

Today, environmental health research on toxicological adverse effects of metal-inorganic materials diffused by cigarettes represents a new challenge for assessing new health risks directly related to the critical chemical-size features of the particles. Therefore, morpho-chemical analyses of hazardous particles become critical in response to the distinctive assumptions about the origin, evolution, and coexisting phases. Here, we report a detailed investigation through direct microscopy imaging of metal-inorganic contaminants for one traditional and two heat-not-burn commercial cigarettes of three different brands. Chemical-size studies revealed the critical presence of heavy metal-inorganic nanostructured microparticles on both paper and filter components of the cigarette, before and after smoking. The direct experimental imaging evidenced on how hazardous particles evolved in mass-size forming coexisting multi-phases of large agglomerate because of the persistence and accumulative effect of the heating puffing. The estimated porosity of the unsuitable engineered filters validated the allowed migration of micrometric pollutants independently from their intrinsic size-shape property. Furthermore, the inappropriate design of the filters made it an adverse sponge reservoir capable of collecting all possible hazardous chemical agents potentially toxic. These substantial results strongly support experimentally the tremendous effect of the smoke capable of transporting and manipulating a high amount of elusive particles, as a particles heat carrier.


Asunto(s)
Productos de Tabaco , Sustancias Peligrosas , Humo/análisis , Fumar , Nicotiana , Productos de Tabaco/toxicidad
10.
Colloids Surf B Biointerfaces ; 203: 111727, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33819818

RESUMEN

In the last years, intense efforts have been made in order to obtain colloidal-based systems capable of pointing out the presence of melamine in food samples. In this work, we reported about the recognition of melamine in aqueous solution, using gold nanoparticles stabilized with 3-mercapto-1-propanesulfonate (AuNPs-3MPS), with the aim of deepening how the recognition process works. AuNPs were synthesized using a wet chemical reduction method. The synthesized AuNPs-3MPS probe was fully characterized, before and after the recognition process, by both physicochemical (UV-vis, FT-IR, 1H-NMR, DLS and ζ-potential) and morphostructural techniques (AFM, HR-TEM). The chemical and electronic structure was also investigated by SR-XPS. The sensing method is based on the melamine-induced aggregation of AuNPs; the presence of melamine was successfully detected in the range of 2.5-500 ppm. The results achieved also demonstrate that negatively charged AuNPs-3MPS are potentially useful for determining melamine contents in aqueous solution. SR-XPS measurements allowed to understand interaction mechanism between the probe and the analyte. The presence of sulfonate groups allows a mutual interaction mediated by electrostatic bonds between nanoparticles surface thiols and positively charged amino groups of melamine molecules.


Asunto(s)
Oro , Nanopartículas del Metal , Leche , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Sulfhidrilo , Triazinas
11.
Nanoscale Adv ; 3(16): 4692-4701, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36134303

RESUMEN

Photoacoustic signal detection has been used to build a new strategy to determine the mesoscale self-assembly of metal nanoparticles in terms of size distribution and aggregate packing density (metal nanoparticle filling factor). A synergistic approach integrating photoacoustic signal and theoretical studies, validated by conventional light scattering and electron microscopy techniques, allows us to obtain a well-defined morphological interpretation of nanoparticle-based super-aggregates. By pumping light in a complex system, the acousto-thermal effect was listened to, providing information on the aggregation phenomena. Super-aggregates of covalently interconnected silver nanoparticles (AgNPs) functionalized with an organometallic dithiol are identified in solution, as a proof of concept for the versatility of the photoacoustic approach. According to our results, tiny AgNPs (size less than 10 nm) assembled into a 3D-network of super-aggregates (SA-AgNPs) with sizes in the range 100-200 nm and a filling factor in the range of 30-50%. Low-cost, rapid, and easy photoacoustic measurement in the low frequency range (less than 100 Hz) was revealed to be an innovative method to characterize the fundamental structure/property correlation of metal nanoparticle super-aggregates. This morpho-optical approach, which uses the absorption and scattering properties of nanoparticles in the liquid phase, opens new perspectives for advanced biomedical and structural applications.

12.
Int J Surg Case Rep ; 77: 753-758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33251091

RESUMEN

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has an impact on the delivery of neurosurgical care, and it is changing the perioperative practice worldwide. We present the first case in the literature of craniectomy procedure and asportation of a solitary cerebellar metastasis of the oesophagus squamous carcinoma in a 77 years old woman COVID-19 positive. In these particular circumstances, we show that adequate healthcare resources and risk assessments are essential in the management of COVID-19 patients referred to emergency surgery. PRESENTATION OF CASE: The case here presented was treated in 2019 for squamous carcinoma of the oesophagus. In April 2020, she presented a deterioration of her clinical picture consisting of dysphagia, abdominal pain, hyposthenia and ataxia. A Head CT scan was performed, which showed the presence of a solitary cerebellar metastasis. Her associated SARS-CoV-2 positivity status represented the principal clinical concern throughout her hospitalisation. DISCUSSION: The patient underwent a suboccipital craniectomy procedure with metastasis asportation. She tested positive for SARS-CoV-2 in the pre- and post-operative phases, but she was not admitted to the intensive care unit because she did not present any respiratory complications. Her vital parameters and inflammation indexes fell within the reference ranges, and she was kept in isolation for 16 days in our neurosurgical unit following strict COVID-19 measures. She was asymptomatic and not treated for any of the specific and non-specific symptoms of COVID-19. CONCLUSION: This is the first case reported of solitary cerebellar metastasis of oesophagus carcinoma operated on a COVID-19 positive patient. It shows that asymptomatic COVID-19 positive patients can undergo major emergency surgeries without the risk of infecting the operating team if adequate Personal Protection Equipment (PPE) is used. The patient remained asymptomatic and did not develop the disease's active phase despite undergoing a stressful event such as a major emergency neurosurgical procedure. In the current crisis, a prophylactic COVID-19 screening test can identify asymptomatic patients undergoing major emergency surgery and adequate resource planning and Personal Protective Equipment (PPE) for healthcare workers can minimise the effect of the COVID-19 pandemic.

13.
Mater Sci Eng C Mater Biol Appl ; 117: 111337, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919686

RESUMEN

Gold nanoparticles (AuNPs) are promising carriers in the field of nanomedicine and represent a very intriguing approach in drug delivery applications, due to their small size and enhanced properties. This work aims to highlight the interaction between functionalized AuNPs and the immune-system suppressant drug Methotrexate (MTX) at molecular level. Small and monodisperse (<2RH>5 ± 1 nm) gold nanoparticles were prepared by a simple chemical route using hydrophilic thiol 3-mercapto-1-propanesulfonate (3MPS) as a functionalizing/capping agent and act as a platform for post-synthesis conjugation of MTX via non-covalent interaction. The AuNPs-3MPS@MTX bioconjugate and the AuNPs alone were characterized to investigate their optical, chemical, and morphological properties. Moreover, NMR, AFM, SAXS, HR-TEM and SR-XPS data confirmed the spherical shape of AuNPs and allowed to determine the mechanisms behind such drug-nanoparticle physicochemical interactions. These analyses define the overall structure of drug-loaded AuNPs-3MPS and drug location on the colloidal nanoparticles surface. Based on the experimental data, it is notable to assert that MTX was successfully loaded on the negatively charged nanoparticles surface via electrostatic interactions. The physicochemical behavior leads to the formation of large clusters with close packed arrangement of AuNPs-3MPS@MTX. This self-assembling property is of importance for delivery purpose affecting the drug-loaded nanoparticle size, functionality, and morphology. Knowledge of how these systems behave will aid in increasing drug efficacy and in understanding the pharmacodynamics and pharmacokinetic properties, opening to new physicochemical insight for therapy and drug delivery systems.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oro , Metotrexato , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Difracción de Rayos X
14.
Int J Pharm ; 585: 119467, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32497730

RESUMEN

Since the application of nanotechnology to drug delivery, both polymer-based and lipid-based nanocarriers have demonstrated clinical benefits, improving both drug efficacy and safety. However, to further address the challenges of the drug delivery field, hybrid lipid-polymer nanocomposites have been designed to merge the beneficial features of both polymer-based and lipid-based delivery systems in a single nanocarrier. Within this scenario, this work is aimed at developing novel hybrid vesicles following the recent strategy of modifying the internal structure of liposomes. Specifically, polyethylene glycol-dimethacrylate (PEG-DMA, molecular weight 750 or 4000), was entrapped within unilamellar liposomes made of hydrogenated soybean phosphatidylcholine/cholesterol, and photo-crosslinked, in order to transform the aqueous inner core of liposomes into a soft and elastic hydrogel. After appropriate optimization of the preparation and gelation procedures, the primary objective of this work was to analyze the effect of the molecular weight of PEG-DMA on the main properties of these Gel-in-Liposome (GiL) systems. Indeed, by varying the molecular weight of PEG-DMA also its hydrophilic/lipophilic balance was modified and different arrangements of the polymer within the structure of liposomes as well as different interaction with their membrane were obtained. Both polymers were found in the inner core of the liposomes, however, the more hydrophobic PEG750-DMA also formed localized clusters within the liposome membrane, whereas the more hydrophilic PEG4000-DMA formed a polymeric corona on the vesicle surface. Preliminary cytotoxicity studies were also performed to evaluate the biological safety of these GiL systems and their suitability as innovative materials drug delivery application.


Asunto(s)
Química Farmacéutica/métodos , Liposomas/química , Metacrilatos/química , Polietilenglicoles/química , Línea Celular , Supervivencia Celular , Colesterol/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Hidrogeles/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Peso Molecular , Fosfatidilcolinas/química
15.
Materials (Basel) ; 13(8)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290403

RESUMEN

Today, biomaterial research on biomimetic mineralization strategies represents a new challenge in the prevention and cure of enamel mineral loss on delicate deciduous teeth. Distinctive assumptions about the origin, the growth, and the functionalization on the biomimetic materials have been recently proposed by scientific research studies in evaluating the different clinical aspects of treating the deciduous tooth. Therefore, appropriate morpho-chemical observations on delivering specific biomaterials to enamel teeth is the most important factor for controlling biomineralization processes. Detailed morpho-chemical investigations of the treated enamel layer using three commercial toothpastes (Biorepair, F1400, and F500) were performed through variable pressure scanning electron microscopy (VP-SEM) and energy dispersive X-ray spectroscopy (EDS) on deciduous teeth in their native state. A new microscopy methodology allowed us to determine the behaviors of silicate, phosphate, and calcium contents from the early stage, as commercially available toothpastes, to the final stage of delivered diffusion, occurring within the enamel layer together with their penetration depth properties. The reported results represent a valuable background towards full comprehension of the role of organic-inorganic biomaterials for developing a controlled biomimetic toothpaste in biofluid media.

16.
Eur J Histochem ; 64(2)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32236088

RESUMEN

Schwann cells (SC) are characterized by a remarkable plasticity that enables them to promptly respond to nerve injury promoting axonal regeneration. In peripheral nerves after damage SC convert to a repair-promoting phenotype activating a sequence of supportive functions that drive myelin clearance, prevent neuronal death, and help axon growth and guidance. Regeneration of peripheral nerves after damage correlates inversely with thrombin levels. Thrombin is not only the key regulator of the coagulation cascade but also a protease with hormone-like activities that affects various cells of the central and peripheral nervous system mainly through the protease-activated receptor 1 (PAR1). Aim of the present study was to investigate if and how thrombin could affect the axon supportive functions of SC. In particular, our results show that the activation of PAR1 in rat SC cultures with low levels of thrombin or PAR1 agonist peptides induces the release of molecules, which favor neuronal survival and neurite elongation. Conversely, the stimulation of SC with high levels of thrombin or PAR1 agonist peptides drives an opposite effect inducing SC to release factors that inhibit the extension of neurites. Moreover, high levels of thrombin administered to sciatic nerve ex vivo explants induce a dramatic change in SC morphology causing disappearance of the Cajal bands, enlargement of the Schmidt-Lanterman incisures and calcium-mediated demyelination of the paranodes. Our results indicate thrombin as a novel modulator of SC plasticity potentially able to favor or inhibit SC pro-regenerative properties according to its level at the site of lesion.


Asunto(s)
Neurogénesis/efectos de los fármacos , Nódulos de Ranvier/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Trombina/farmacología , Animales , Calcio/metabolismo , Femenino , Masculino , Neuritas/efectos de los fármacos , Células PC12 , Pirroles/farmacología , Quinazolinas/farmacología , Ratas , Ratas Wistar , Receptor PAR-1/metabolismo , Nervio Ciático/efectos de los fármacos , Tapsigargina/farmacología
17.
Clin Anat ; 33(2): 245-256, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31595552

RESUMEN

The purpose of our experimental research was to assess the effects of aging on the main corneal structures in healthy corneas. Small, human cornea samples were collected from 20 Caucasian subjects during surgery for traumatic lesions to the eye. Ten subjects were adults (mean age 28 years) and 10 were elderly (mean age 76 years). Morphological analysis was carried out using light microscopy and electron microscopy. Another 40 patients (20 young: mean age < 30 years; 20 elderly: mean age > 70 years) were studied in vivo by confocal microscopy. The resulting images were analyzed qualitatively, quantitatively, and statistically. The basic light microscope revealed a decrease in endothelial cell density with age accompanied by an increase in endothelial cell size. Transmission electron microscopy revealed a corneal thinning and a decrease in the number of corneal stromal cells. A marked decrease in stromal nerve fibers was observed in the older subjects compared to the younger ones. Variable pressure scanning electron microscopy (VP-SEM) was used to make surface morphological observations and to determine the chemical composition of in vivo hydrated human corneas. Our results showed the effects of aging on normal corneal morphology highlighting the structural diversity of the corneal layers and revealing an age-related reduction in nerve fibers, thus explaining the decreased corneal sensitivity that may be observed in the elderly. Clin. Anat. 33:245-256, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Factores de Edad , Córnea/ultraestructura , Fibras Nerviosas/ultraestructura , Adulto , Anciano , Anciano de 80 o más Años , Recuento de Células , Femenino , Formaldehído , Humanos , Masculino , Microscopía Confocal , Microscopía Electrónica
18.
Orthop J Sports Med ; 7(12): 2325967119887920, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31897411

RESUMEN

BACKGROUND: The anterolateral ligament (ALL) has been identified as a structure on the lateral side of the knee, but debate exists regarding whether it is a capsular thickening or a ligament. HYPOTHESIS: A detailed ultrastructural characterization of the ALL and its ultrastructure collagen arrangement will reveal it more closely resembles ligamentous tissue than joint capsule. STUDY DESIGN: Descriptive laboratory study. METHODS: Eight paired knee samples from 4 fresh-frozen male cadavers were used for this study. Samples were harvested from the ALL, the joint capsule, and the medial collateral ligament (MCL). All samples were evaluated with light microscopy (LM), transmission electron microscopy (TEM), and variable pressure scanning electron microscopy (VP-SEM). With LM, the 3 tissues were analyzed and their morphology described. With TEM, the ultrastructure and collagen characteristics were quantified and compared among specimens. Then, the 3-dimensional characteristics were compared with VP-SEM. RESULTS: Ultrastructure analysis demonstrated similar morphology between the ALL and MCL, with significant differences in these 2 structures as compared with the joint capsule. On LM, the ALL and MCL were characterized by the presence of a dense collagen fiber oriented in the longitudinal and transversal directions of the fiber bundles, while the joint capsule was found to have a more disorganized architecture. On TEM, the collagen fibers of the ALL and MCL demonstrated similar ultrastructural morphology, with both having collagen fibers in parallel, longitudinal alignment. A quantitative analysis was also performed, with the mean (± SD) diameter of fibrils in the ALL and MCL being 80 ± 2.66 nm and 150 ± 3.35 nm, respectively (all P < .001). The VP-SEM highlighted that ALL and MCL morphology demonstrated arrangements of fiber bundles that are densely packed and organized, in contrast to the disorganized fibers of the joint capsule. CONCLUSION: The ALL and MCL have comparable ultrastructures that are distinctly different from the joint capsule, as visualized on LM, TEM, and VP-SEM. CLINICAL RELEVANCE: The ALL should be considered a distinctive structure of the knee, although strictly connected to the surrounding capsule.

19.
Sci Rep ; 8(1): 17045, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451974

RESUMEN

We report here on soft-template electropolymerizations of polypyrrole (Ppy)-based nanocomposites triggered by graphene platelets (GP) from shungite (SH) rocks. A properly designed procedure for an efficient extraction of graphene platelets from SH powders is established to produce remarkable graphene materials in a low oxidation state and with a high electrical conductivity (1490 S cm-1). By using positively and negatively charged templating surfactants the role played by the graphene units on the electropolymerization reactions is pointed out by SEM, EDX, TEM, SAED, XPS and Raman spectroscopy. The morphological/structural characterizations highlight that GP from SH have a surface chemistry suitable for selective and mutual interactions with the growing Ppy chains. CV and galvanostatic charge/discharge measurements evidence that GP improve the transport of both electrons and ions within the bulk material by means of a synergistic action with the polymer phase. This cooperative behavior induces an enhancement of the specific capacitance up to 250 F g-1 at 2 A g-1. The Ppy-GP materials produced following the settled protocols result to be appropriate for fabricating multifunctional charge transport and storage electroactive systems.

20.
Ann Plast Surg ; 81(2): 228-234, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29781852

RESUMEN

INTRODUCTION: The pathogenic mechanism underlying capsular contracture is still unknown. It is certainly a multifactorial process, resulting from human body reaction, biofilm activation, bacteremic seeding, or silicone exposure. The scope of the present article is to investigate the effect of hypofractionated radiotherapy protocol (2.66 Gy × 16 sessions) both on silicone and polyurethane breast implants. METHODS: Silicone implants and polyurethane underwent irradiation according to a hypofractionated radiotherapy protocol for the treatment of breast cancer. After irradiation implant shells underwent mechanical, chemical, and microstructural evaluation by means of tensile testing, infrared spectra in attenuated total reflectance mode, nuclear magnetic resonance, and field emission scanning electron microscopy. RESULTS: At superficial analysis, irradiated silicone samples show several visible secondary and tertiary blebs. Polyurethane implants showed an open cell structure, which closely resembles a sponge. Morphological observation of struts from treated polyurethane sample shows a more compact structure, with significantly shorter and thicker struts compared with untreated sample. The infrared spectra in attenuated total reflectance mode spectra of irradiated and control samples were compared either for silicon and polyurethane samples. In the case of silicone-based membranes, treated and control specimens showed similar bands, with little differences in the treated one. Nuclear magnetic resonance spectra on the fraction soluble in CDCl3 support these observations. Tensile tests on silicone samples showed a softer behavior of the treated ones. Tensile tests on Polyurethane samples showed no significant differences. CONCLUSIONS: Polyurethane implants seem to be more resistant to radiotherapy damage, whereas silicone prosthesis showed more structural, mechanical, and chemical modifications.


Asunto(s)
Implantes de Mama , Poliuretanos/efectos de la radiación , Hipofraccionamiento de la Dosis de Radiación , Geles de Silicona/efectos de la radiación , Ensayo de Materiales , Fenómenos Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...