Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4123-4127, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892134

RESUMEN

A pulse wave velocity (PWV) measurement method performed above a small blood vessel using an ultrasonic probe is studied and reported in this paper. These experimentations are carried out using a high-frequency probe (14-22 MHz), allowing a high level of resolution compatible with the vessel dimensions, combined with an open research ultrasound scanner. High frame-rate (HFR) imaging (10 000 frames per second) is used for a precise PWV estimation. The measurements are performed in-vivo on a healthy volunteer. The probe is placed above the ulnar artery on the wrist in order to make longitudinal scans. In addition to conventional duplex ultrasound evaluation, the measurement of the PWV using this method at this location could strengthen the detection and diagnosis of cardiovascular diseases (CVDs), in particular for arm artery diseases (AADs). Moreover, these experimentations are also carried out within the scope of a demonstration for a potential miniaturized and wearable device (i.e., a probe with fewer elements, typically less than 32, and its associated electronics). The study has shown results coherent with expected PWV and also promising complementary results such as intima-media thickness (IMT) with spatiotemporal resolution on the order of 6.2 µm and 0.1 ms.


Asunto(s)
Grosor Intima-Media Carotídeo , Análisis de la Onda del Pulso , Humanos , Arteria Cubital/diagnóstico por imagen , Ultrasonido , Muñeca/diagnóstico por imagen
2.
Biomed Opt Express ; 10(8): 3899-3915, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31452983

RESUMEN

Recently, multimodal imaging has gained an increasing interest in medical applications thanks to the inherent combination of strengths of the different techniques. For example, diffuse optics is used to probe both the composition and the microstructure of highly diffusive media down to a depth of few centimeters, but its spatial resolution is intrinsically low. On the other hand, ultrasound imaging exhibits the higher spatial resolution of morphological imaging, but without providing solid constitutional information. Thus, the combination of diffuse optical imaging and ultrasound may improve the effectiveness of medical examinations, e.g. for screening or diagnosis of tumors. However, the presence of an ultrasound coupling gel between probe and tissue can impair diffuse optical measurements like diffuse optical spectroscopy and diffuse correlation spectroscopy, since it may provide a direct path for photons between source and detector. A systematic study on the effect of different ultrasound coupling fluids was performed on tissue-mimicking phantoms, confirming that a water-clear gel can produce detrimental effects on optical measurements when recovering absorption/reduced scattering coefficients from time-domain spectroscopy acquisitions as well as particle Brownian diffusion coefficient from diffuse correlation spectroscopy ones. On the other hand, we show the suitability for optical measurements of other types of diffusive fluids, also compatible with ultrasound imaging.

3.
IEEE Trans Med Imaging ; 33(11): 2149-66, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24988589

RESUMEN

In ophthalmic ultrasonography the crystalline lens is known to be the main source of phase aberration, causing a significant decrease in resolution and distortion effects on axial B-scans. This paper proposes a computationally efficient method to correct the phase aberration arising from the crystalline lens, including refraction effects using a bending ray tracing approach based on Fermat's principle. This method is used as a basis to perform eye-adapted beamforming (BF), with appropriate focusing delays for a 128-element 20-MHz linear array in both emission and reception. Implementation was achieved on an in-house developed experimental ultrasound scanning device, the ECODERM. The proposed BF was tested in vitro by imaging a wire phantom through an eye phantom consisting of a synthetic gelatin lens anatomically set up in an appropriate liquid (turpentine) to approach the in vivo velocity ratio. Both extremes of accommodation shapes of the human crystalline lens were investigated. The performance of the developed BF was evaluated in relation to that in homogeneous medium and compared to a conventional delay-and-sum (DAS) BF and a second adapted BF which was simplified to ignore the lens refraction. Global expectations provided by our method with the transducer array are reviewed by an analysis quantifying both image quality and spatial fidelity, as well as the detrimental effects of a crystalline lens in conventional reconstruction. Compared to conventional array imaging, the results indicated a two-fold improvement in the lateral resolution, greater sensitivity and a considerable reduction of spatial distortions that were sufficient to envisage reliable biometry directly in B-mode, especially phakometry.


Asunto(s)
Artefactos , Ojo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Cristalino/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Óptica y Fotónica , Fantasmas de Imagen , Ultrasonografía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...