Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transfusion ; 63(10): 1859-1871, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37711059

RESUMEN

BACKGROUND: Hemovigilance (HV) is usually based on voluntary reports (passive HV). Our aim is to ascertain credible incidence, severity, and mortality of transfusion-associated adverse events (TAAEs) using an active HV program. STUDY DESIGN AND METHODS: Prospective cohort study to estimate transfusion risk after 46,488 transfusions in 5830 patients, using an active HV program with follow-up within the first 24 h after transfusion. We compared these results to those with the previously established passive HV program during the same 30 months of the study. We explored factors associated with the occurrence of TAAEs using generalized estimating equations models. RESULTS: With the active HV program TAAEs incidence was 57.3 (95% CI, 50.5-64.2) and mortality 1.1 (95% CI, 0.13-2.01) per 10,000 transfusions. Incidence with the new surveillance model was 14.0 times higher than with the passive. Most events occurred when transfusions had already finished (60.2%); especially pulmonary events (80.4%). Three out of five deaths and 50.3% of severe TAAEs were pulmonary. In the multivariate analysis surgical patients had half TAAEs risk when compared to medical patients (OR, 0.53; 95% CI, 0.34-0.78) and women had nearly twice the risk of a pulmonary event compared to men (OR, 1.84; 95% CI, 1.03-3.32). Patient's age, blood component type, or blood component shelf-life were unrelated to TAAEs risk. DISCUSSION: Active hemovigilance programs provide additional data which may lead to better recognition and understanding of TAAEs and their frequency and severity.


Asunto(s)
Seguridad de la Sangre , Transfusión Sanguínea , Masculino , Humanos , Femenino , Incidencia , Estudios Prospectivos , Estudios de Seguimiento
2.
Brain Pathol ; 33(6): e13189, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37505935

RESUMEN

Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.


Asunto(s)
Encefalopatías , Enfermedades Neurodegenerativas , Calcificación Vascular , Humanos , Animales , Ratones , Encefalopatías/patología , Fosfatos/metabolismo , Encéfalo/patología , Receptor de Retrovirus Xenotrópico y Politrópico , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Enfermedades Neurodegenerativas/patología , Mutación , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
3.
Methods Cell Biol ; 175: 97-128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967148

RESUMEN

Vision is one of our dominant senses and its loss has a profound impact on the life quality of affected individuals. Highly specialized neurons in the retina called photoreceptors convert photons into neuronal responses. This conversion of photons is mediated by light sensitive opsin proteins, which are found in the outer segments of the photoreceptors. These outer segments are highly specialized primary cilia, explaining why retinal dystrophy is a key feature of ciliopathies, a group of diseases resulting from abnormal and dysfunctional cilia. Therefore, research on ciliopathies often includes the analysis of the retina with special focus on the photoreceptor and its outer segment. In the last decade, the zebrafish has emerged as an excellent model organism to study human diseases, in particular with respect to the retina. The cone-rich retina of zebrafish resembles the fovea of the human macula and thus represents an excellent model to study human retinal diseases. Here we give detailed guidance on how to analyze the morphological and ultra-structural integrity of photoreceptors in the zebrafish using various histological and imaging techniques. We further describe how to conduct functional analysis of the retina by electroretinography and how to prepare isolated outer segment fractions for different -omic approaches. These different methods allow a comprehensive analysis of photoreceptors, helping to enhance our understanding of the molecular and structural basis of ciliary function in health and of the consequences of its dysfunction in disease.


Asunto(s)
Ciliopatías , Pez Cebra , Animales , Humanos , Pez Cebra/metabolismo , Cilios/metabolismo , Retina , Proteínas de Pez Cebra/metabolismo , Ciliopatías/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo
4.
J Physiol Biochem ; 79(1): 235-249, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36334253

RESUMEN

We have investigated the effects of melatonin on major pathways related with cellular proliferation and energetic metabolism in pancreatic stellate cells. In the presence of melatonin (1 mM, 100 µM, 10 µM, or 1 µM), decreases in the phosphorylation of c-Jun N-terminal kinase and of p44/42 and an increase in the phosphorylation of p38 were observed. Cell viability dropped in the presence of melatonin. A rise in the phosphorylation of AMP-activated protein kinase was detected in the presence of 1 mM and 100 µM melatonin. Treatment with 1 mM melatonin decreased the phosphorylation of protein kinase B, whereas 100 µM and 10 µM melatonin increased its phosphorylation. An increase in the generation of mitochondrial reactive oxygen species and a decrease of mitochondrial membrane potential were noted following melatonin treatment. Basal and maximal respiration, ATP production by oxidative phosphorylation, spare capacity, and proton leak dropped in the presence of melatonin. The expression of complex I of the mitochondrial respiratory chain was augmented in the presence of melatonin. Conversely, in the presence of 1 mM melatonin, decreases in the expression of mitofusins 1 and 2 were detected. The glycolysis and the glycolytic capacity were diminished in cells treated with 1 mM or 100 µM melatonin. Increases in the expression of phosphofructokinase-1 and lactate dehydrogenase were noted in cells incubated with 100 µM, 10 µM, or 1 µM melatonin. The expression of glucose transporter 1 was increased in cells incubated with 10 µM or 1 µM melatonin. Conversely, 1 mM melatonin decreased the expression of all three proteins. Our results suggest that melatonin, at pharmacological concentrations, might modulate mitochondrial physiology and energy metabolism in addition to major pathways involved in pancreatic stellate cell proliferation.


Asunto(s)
Melatonina , Melatonina/farmacología , Células Estrelladas Pancreáticas , Mitocondrias/metabolismo , Fosforilación Oxidativa , Proliferación Celular
5.
Nat Commun ; 13(1): 5732, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175561

RESUMEN

The kidney regulates plasma protein levels by eliminating them from the circulation. Proteins filtered by glomeruli are endocytosed and degraded in the proximal tubule and defects in this process result in tubular proteinuria, an important clinical biomarker. However, the spatiotemporal organization of renal protein metabolism in vivo was previously unclear. Here, using functional probes and intravital microscopy, we track the fate of filtered proteins in real time in living mice, and map specialized processing to tubular structures with singular value decomposition analysis and three-dimensional electron microscopy. We reveal that degradation of proteins requires sequential, coordinated activity of distinct tubular sub-segments, each adapted to specific tasks. Moreover, we leverage this approach to pinpoint the nature of endo-lysosomal disorders in disease models, and show that compensatory uptake in later regions of the proximal tubule limits urinary protein loss. This means that measurement of proteinuria likely underestimates severity of endocytotic defects in patients.


Asunto(s)
Riñón , Procesamiento Proteico-Postraduccional , Animales , Biomarcadores , Túbulos Renales Proximales , Ratones , Proteinuria
6.
Light Sci Appl ; 11(1): 43, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210400

RESUMEN

Histology involves the observation of structural features in tissues using a microscope. While diffraction-limited optical microscopes are commonly used in histological investigations, their resolving capabilities are insufficient to visualize details at subcellular level. Although a novel set of super-resolution optical microscopy techniques can fulfill the resolution demands in such cases, the system complexity, high operating cost, lack of multi-modality, and low-throughput imaging of these methods limit their wide adoption for histological analysis. In this study, we introduce the photonic chip as a feasible high-throughput microscopy platform for super-resolution imaging of histological samples. Using cryopreserved ultrathin tissue sections of human placenta, mouse kidney, pig heart, and zebrafish eye retina prepared by the Tokuyasu method, we demonstrate diverse imaging capabilities of the photonic chip including total internal reflection fluorescence microscopy, intensity fluctuation-based optical nanoscopy, single-molecule localization microscopy, and correlative light-electron microscopy. Our results validate the photonic chip as a feasible imaging platform for tissue sections and pave the way for the adoption of super-resolution high-throughput multimodal analysis of cryopreserved tissue samples both in research and clinical settings.

7.
Int J Mol Sci ; 22(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34074034

RESUMEN

In certain diseases of the pancreas, pancreatic stellate cells form an important part of fibrosis and are critical for the development of cancer cells. A hypoxic condition develops within the tumor, to which pancreatic stellate cells adapt and are able to proliferate. The consequence is the growth of the tumor. Melatonin, the product of the pineal gland, is gaining attention as an agent with therapeutic potential against pancreatic cancers. Its actions on tumor cells lead, in general, to a reduction in cell viability and proliferation. However, its effects on pancreatic stellate cells subjected to hypoxia are less known. In this study, we evaluated the actions of pharmacological concentrations of melatonin (1 mM-1 µM) on pancreatic stellate cells subjected to hypoxia. The results show that melatonin induced a decrease in cell viability at the highest concentrations tested. Similarly, the incorporation of BrdU into DNA was diminished by melatonin. The expression of cyclins A and D also was decreased in the presence of melatonin. Upon treatment of cells with melatonin, increases in the expression of major markers of ER stress, namely BIP, phospho-eIF2α and ATF-4, were detected. Modulation of apoptosis was noticed as an increase in caspase-3 activation. In addition, changes in the phosphorylated state of p44/42, p38 and JNK MAPKs were detected in cells treated with melatonin. A slight decrease in the content of α-smooth muscle actin was detected in cells treated with melatonin. Finally, treatment of cells with melatonin decreased the expression of matrix metalloproteinases 2, 3, 9 and 13. Our observations suggest that melatonin, at pharmacological concentrations, diminishes the proliferation of pancreatic stellate cells subjected to hypoxia through modulation of cell cycle, apoptosis and the activation of crucial MAPKs. Cellular responses might involve certain ER stress regulator proteins. In view of the results, melatonin could be taken into consideration as a potential therapeutic agent for pancreatic fibrosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina A/metabolismo , Ciclina D/metabolismo , Melatonina/farmacología , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/metabolismo , Actinas/metabolismo , Factor de Transcripción Activador 4/metabolismo , Animales , Bromodesoxiuridina/metabolismo , Caspasa 3/metabolismo , Hipoxia de la Célula , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas de Choque Térmico/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Ratas , Ratas Wistar , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Antioxidants (Basel) ; 10(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918063

RESUMEN

Pancreatic stellate cells (PSC) play a major role in the formation of fibrotic tissue in pancreatic tumors. On its side, melatonin is a putative therapeutic agent for pancreatic cancer and inflammation. In this work, the actions of melatonin on PSC subjected to hypoxia were evaluated. Reactive oxygen species (ROS) generation reduced (GSH) and oxidized (GSSG) levels of glutathione, and protein and lipid oxidation were analyzed. The phosphorylation of nuclear factor erythroid 2-related factor (Nrf2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), and the regulatory protein nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (IκBα) was studied. The expression of Nrf2-regulated antioxidant enzymes, superoxide dismutase (SOD) enzymes, cyclooxygenase 2 (COX-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also studied. Total antioxidant capacity (TAC) was assayed. Finally, cell viability was studied. Under hypoxia and in the presence of melatonin generation of ROS was observed. No increases in the oxidation of proteins or lipids were detected. The phosphorylation of Nrf2 and the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1, heme oxygenase-1, SOD1, and of SOD2 were augmented. The TAC was increased. Protein kinase C was involved in the effects of melatonin. Melatonin decreased the GSH/GSSG ratio at the highest concentration tested. Cell viability dropped in the presence of melatonin. Finally, melatonin diminished the phosphorylation of NF-kB and the expression of COX-2, IL-6, and TNF-α. Our results indicate that melatonin, at pharmacological concentrations, modulates the red-ox state, viability, and the expression of proinflammatory mediators in PSC subjected to hypoxia.

9.
Biol Cell ; 112(10): 280-299, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32632968

RESUMEN

BACKGROUND INFORMATION: Pancreatic stellate cells play a key role in the fibrosis that develops in diseases such as pancreatic cancer. In the growing tumour, a hypoxia condition develops under which cancer cells are able to proliferate. The growth of fibrotic tissue contributes to hypoxia. In this study, the effect of hypoxia (1% O2 ) on pancreatic stellate cells physiology was investigated. Changes in intracellular free-Ca2+ concentration, mitochondrial free-Ca2+ concentration and mitochondrial membrane potential were studied by fluorescence techniques. The status of enzymes responsible for the cellular oxidative state was analyzed by quantitative reverse transcription-polymerase chain reaction, high-performance liquid chromatography, spectrophotometric and fluorimetric methods and by Western blotting analysis. Cell viability and proliferation were studied by crystal violet test, 5-bromo-2-deoxyuridine cell proliferation test and Western blotting analysis. Finally, cell migration was studied employing the wound healing assay. RESULTS: Hypoxia induced an increase in intracellular and mitochondrial free-Ca2+ concentration, whereas mitochondrial membrane potential was decreased. An increase in mitochondrial reactive oxygen species production was observed. Additionally, an increase in the oxidation of proteins and lipids was detected. Moreover, cellular total antioxidant capacity was decreased. Increases in the expression of superoxide dismutase 1 and 2 were observed and superoxide dismutase activity was augmented. Hypoxia evoked a decrease in the oxidized/reduced glutathione ratio. An increase in the phosphorylation of nuclear factor erythroid 2-related factor and in expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 were detected. The expression of cyclin A was decreased, whereas expression of cyclin D and the content of 5-bromo-2-deoxyuridine were increased. This was accompanied by an increase in cell viability. The phosphorylation state of c-Jun NH2 -terminal kinase was increased, whereas that of p44/42 and p38 was decreased. Finally, cells subjected to hypoxia maintained migration ability. CONCLUSIONS AND SIGNIFICANCE: Hypoxia creates pro-oxidant conditions in pancreatic stellate cells to which cells adapt and leads to increased viability and proliferation.


Asunto(s)
Hipoxia de la Célula , Estrés Oxidativo , Células Estrelladas Pancreáticas , Animales , Calcio/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Células Estrelladas Pancreáticas/citología , Células Estrelladas Pancreáticas/metabolismo , Ratas , Ratas Wistar
10.
J Appl Toxicol ; 40(11): 1554-1565, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32567733

RESUMEN

In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 µm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 µm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.


Asunto(s)
Antagonistas de Hormonas/toxicidad , Células Estrelladas Pancreáticas/efectos de los fármacos , Receptores de Melatonina/antagonistas & inhibidores , Triptaminas/toxicidad , Animales , Señalización del Calcio/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Masculino , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Fosforilación , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores de Melatonina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
J Physiol Biochem ; 76(2): 345-355, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32361979

RESUMEN

In this study, the effects of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC) have been examined. Cell viability and proliferation, caspase-3 activation, and the expression of cyclin A and cyclin D were analyzed. Our results show that melatonin decreased PSC viability in a time- and concentration-dependent manner. This effect was not inhibited by treatment of cells with MT1, MT2, calmodulin, or ROR-alpha inhibitors prior to melatonin addition. Activation of caspase-3 in response to melatonin was detected. The expression of cyclin A and cyclin D was decreased in cells treated with melatonin. Finally, changes in BrdU incorporation into the newly synthesized DNA of proliferating cells were also observed in the presence of melatonin. We conclude that melatonin, at pharmacological concentrations, modulates proliferation of PSC through activation of apoptosis and involving crucial regulators of the cell cycle. These actions might not require specific melatonin receptors. Our observations suggest that melatonin, at high doses, could potentially exert anti-fibrotic effects and, thus, could be taken into consideration as supportive treatment in the therapy of pancreatic diseases.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Melatonina/farmacología , Células Estrelladas Pancreáticas/efectos de los fármacos , Animales , Caspasa 3/metabolismo , Células Cultivadas , Ciclina A/metabolismo , Ciclina D/metabolismo , Células Estrelladas Pancreáticas/citología , Ratas , Ratas Wistar
12.
Sci Rep ; 10(1): 6352, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286500

RESUMEN

In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Melatonina/farmacología , Oxidación-Reducción/efectos de los fármacos , Células Estrelladas Pancreáticas/metabolismo , Animales , Antioxidantes/metabolismo , Catalasa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/genética , Disulfuro de Glutatión/genética , Hemo-Oxigenasa 1/genética , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Células Estrelladas Pancreáticas/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética
13.
Invest Ophthalmol Vis Sci ; 60(15): 5124-5135, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31834350

RESUMEN

Purpose: Mutations in CACNA2D4, encoding the α2δ4 subunit of retinal voltage-gated calcium channels (Cav), cause a rare type of retinal dysfunction in human, mainly affecting cone vision. Here, we investigate the role of CACNA2D4 in targeting of Cav, its influence on cone-mediated signal transmission, and the cellular and subcellular changes upon loss of α2δ4 by exploiting the advantages of the cone-dominant zebrafish as model system. Methods: We identified two zebrafish CACNA2D4 paralogs (cacna2d4a and cacna2d4b), analyzed their expression by RNA in situ hybridization and introduced truncating frameshift mutations through CRISPR/Cas9-mediated mutagenesis. We analyzed retinal function and morphology of the single and double mutant lines by electroretinography, immunohistochemistry, light- and electron microscopy. Results: Knockout of cacna2d4b reduces the expression of Cacna1fa, the pore-forming subunit of retinal Cav1.4, whereas loss of cacna2d4a did not. Only knockout of both paralogs impaired cone-mediated ERG b-wave amplitude. The number of "floating" ribbons is increased in double-KO, while retinal morphology and expression of postsynaptic mGluR6b remain largely unaffected. Both Cacna1fa and Ribeyeb show ectopic punctate expression in cacna2d4b-KO and double-KO photoreceptors. Conclusions: We find that increasing the expression of Cav at the synaptic membrane is an evolutionarily conserved function of Cacna2d4b. Yet, since both paralogs participate in cone synaptic transmission, we propose partial subfunctionalization in zebrafish. Similar to human patients, our double KO zebrafish model shows mild cone dysfunction, which was not associated with signs of retinal degeneration. Therefore, cacna2d4-KO zebrafish is a suitable model to study the pathophysiological mechanisms underlying CACNA2D4 dysfunction in human.


Asunto(s)
Canales de Calcio Tipo L/genética , ADN/genética , Regulación de la Expresión Génica , Degeneración Retiniana/genética , Animales , Canales de Calcio Tipo L/biosíntesis , ADN/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Inmunohistoquímica , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Transmisión Sináptica , Pez Cebra
14.
Biochim Biophys Acta Gen Subj ; 1863(11): 129407, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31381958

RESUMEN

BACKGROUND: In this work we studied the effects of the melatonin receptor-antagonist luzindole (1 µM-50 µM) on isolated mouse pancreatic acinar cells. METHODS: Changes in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed. RESULTS: Luzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 µM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 µM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 µM). Incubation of pancreatic acinar cells with luzindole (10 µM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion. CONCLUSION: The melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function. GENERAL SIGNIFICANCE: The effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.


Asunto(s)
Células Acinares/metabolismo , Señalización del Calcio/efectos de los fármacos , Páncreas Exocrino/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Melatonina/antagonistas & inhibidores , Tripsina/metabolismo , Triptaminas/farmacología , Células Acinares/citología , Animales , Calcio/metabolismo , Masculino , Ratones , Páncreas Exocrino/citología , Receptores de Melatonina/metabolismo
15.
Eur J Neurosci ; 50(9): 3445-3453, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31286598

RESUMEN

The auditory system comprises some very large axonal terminals like the endbulb and calyx of Held and "giant" corticothalamic synapses. Previously, we described a hitherto unknown population of giant thalamocortical boutons arising from the medial division of the medial geniculate body (MGm) in the Mongolian gerbil, which terminate over a wide cortical range but in a columnar manner particularly in the extragranular layers of the auditory cortex. As a first step towards an understanding of their potential functional role, we here describe their ultrastructure combining anterograde tract-tracing with biocytin and electron microscopy. Quantitative ultrastructural analyses revealed that biocytin-labelled MGm boutons reach much larger sizes than other, non-labelled boutons. Also, mitochondria occupy more space within labelled boutons whereas synapses are of similar size. Labelled boutons are very heterogeneous in size but homogeneous with respect to their ultrastructural characteristics, with asymmetric synapses containing clear, round vesicles and targeting dendritic spines. Functionally, the ultrastructure of the MGm terminals indicates that they form excitatory contacts, which may transmit their information in a rapid, powerful and high-fidelity manner onto strategically advantageous compartments of their cortical target cells.


Asunto(s)
Corteza Auditiva/ultraestructura , Cuerpos Geniculados/ultraestructura , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Terminales Presinápticos/ultraestructura , Tálamo/ultraestructura , Animales , Gerbillinae , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Microscopía Electrónica , Vías Nerviosas/metabolismo , Trazadores del Tracto Neuronal/metabolismo
16.
J Physiol Biochem ; 75(2): 185-197, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30868511

RESUMEN

In this study, the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on human pancreatic stellate cells (HPSCs) have been examined. Cell type-specific markers and expression of melatonin receptors were analyzed by western blot analysis. Changes in intracellular free Ca2+ concentration were followed by fluorimetric analysis of fura-2-loaded cells. Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were determined by fluorescence techniques. Production of reactive oxygen species (ROS) was monitored following 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester and MitoSOX™ Red-derived fluorescence. Cell viability was studied using the AlamarBlue® test. Cultured cells expressed markers typical of stellate cells. However, cell membrane receptors for melatonin could not be detected. Thapsigargin, bradykinin, or melatonin induced changes in intracellular free Ca2+ concentration. In the presence of the indole, a decrease in the GSH/GSSG ratio was observed that depended on the concentration of melatonin used. Furthermore, the indole evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Finally, melatonin decreased HPSC viability in a time and concentration-dependent manner. We conclude that melatonin, at pharmacological concentrations, induces changes in the oxidative state of HPSC. This might regulate cellular viability and could not involve specific plasma membrane receptors.


Asunto(s)
Glutatión/metabolismo , Melatonina/farmacología , Células Estrelladas Pancreáticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Disulfuro de Glutatión/metabolismo , Humanos , Ratones , Páncreas/metabolismo , Células Estrelladas Pancreáticas/citología , Células Estrelladas Pancreáticas/efectos de los fármacos , Ratas , Receptor de Melatonina MT1/metabolismo
17.
J Endod ; 45(1): 45-50, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30448020

RESUMEN

INTRODUCTION: In carious teeth, transforming growth factor beta 1 (TGF-ß1) is released from the dentin matrix and possibly activated in an acidic environment. Conversely, EDTA solutions with a neutral to slightly alkaline pH are used in clinics to promote cell homing in regenerative endodontic procedures. We hypothesized that citric acid (CA) might be more beneficial. METHODS: TGF-ß1 release from human dentin disks conditioned with either 10% CA (pH = 2) or 17% EDTA (pH = 8) and the behavior of human stem cells toward such pretreated dentin were studied. The protein concentration in conditioning solutions after 10 minutes of dentin exposure was determined using a pH-independent slot blot technique. RESULTS: There was a 5-fold higher concentration of the target protein in CA (382 ± 30 ng/disk) compared with EDTA (66 ± 3 ng/disk, P < .005). Using confocal laser scanning microscopy on immunofluorescent-labeled disks, we identified a high density of TGF-ß1 in peritubular dentin after CA treatment. A migration assay showed that CA conditioning attracted significantly more stem cells toward the dentin after 24 hours compared with EDTA (P < .05) or phosphate-buffered saline (P < .005). To investigate whether the cell response to these dentin surfaces could be affected by different pretreatments, we cultured stem cells on conditioned dentin disks and found that CA had a significantly (P < .05) better effect than EDTA on cell attachment and cell survival. CONCLUSIONS: CA conditioning could be useful and may have significant benefits over current treatments.


Asunto(s)
Biomimética/métodos , Ácido Cítrico , Dentina , Células Madre Mesenquimatosas/fisiología , Endodoncia Regenerativa/métodos , Acondicionamiento de Tejidos Dentales/métodos , Adhesión Celular , Movimiento Celular , Supervivencia Celular , Células Cultivadas , Dentina/metabolismo , Ácido Edético , Humanos , Microscopía Confocal , Imagen Molecular , Factor de Crecimiento Transformador beta1/metabolismo
18.
PLoS Genet ; 13(12): e1007150, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29281629

RESUMEN

Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane.


Asunto(s)
Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico , Movimiento Celular , Cilios/genética , Cilios/metabolismo , Humanos , Membranas/metabolismo , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Transporte de Proteínas , Pez Cebra , Proteínas de Unión al GTP rab/genética
19.
J Vis Exp ; (129)2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29155784

RESUMEN

We present a method to investigate the subcellular protein localization in the larval zebrafish retina by combining super-resolution light microscopy and scanning electron microscopy. The sub-diffraction limit resolution capabilities of super-resolution light microscopes allow improving the accuracy of the correlated data. Briefly, 110 nanometer thick cryo-sections are transferred to a silicon wafer and, after immunofluorescence staining, are imaged by super-resolution light microscopy. Subsequently, the sections are preserved in methylcellulose and platinum shadowed prior to imaging in a scanning electron microscope (SEM). The images from these two microscopy modalities are easily merged using tissue landmarks with open source software. Here we describe the adapted method for the larval zebrafish retina. However, this method is also applicable to other types of tissues and organisms. We demonstrate that the complementary information obtained by this correlation is able to resolve the expression of mitochondrial proteins in relation with the membranes and cristae of mitochondria as well as to other compartments of the cell.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Microscopía Fluorescente/métodos , Retina/diagnóstico por imagen , Animales , Retina/patología , Pez Cebra
20.
Front Microbiol ; 8: 508, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28424665

RESUMEN

The Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum constitutes a broad range of organisms with an intriguing array of ultrastructural morphologies, including intracellular membranes and compartments and their corresponding complex genomes encoding these forms. The phylum Chlamydiae are all obligate intracellular bacteria and, although much is already known of their genomes from various families and how these regulate the various morphological forms, we know remarkably little about what is likely the deepest rooting clade of this phylum, which has only been found to contain pathogens of marine and fresh water vertebrates. The disease they are associated with is called epitheliocystis; however, analyses of the causative agents is hindered by an inability to cultivate them for refined in vitro experimentation. For this reason, we have developed tools to analyse both the genomes and the ultrastructures of bacteria causing this disease, directly from infected tissues. Here we present structural data for a member of the family Ca. Similichlamydiaceae from this deep-rooted clade, which we have identified using molecular tools, in epitheliocystis lesions of gilthead seabream (Sparus aurata) in Greece. We present evidence that the chlamydial inclusions appear to develop in a perinuclear location, similar to other members of the phylum and that a chlamydial developmental cycle is present, with chlamydial forms similar to reticular bodies (RBs) and elementary bodies (EBs) detected. Division of the RBs appeared to follow a budding process, and larger RBs with multiple condensed nucleoids were detected using both transmission electron microscopy (TEM) and by focused-ion beam, scanning electron microscopy (FIB-SEM). As model hosts, fish offer many advantages for investigation, and we hope by these efforts to encourage others to explore the biology of fish pathogens from the PVC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...