Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 16(1): 2297872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165200

RESUMEN

Hyperbaric oxygen (HBO) therapy is a well-established method for improving tissue oxygenation and is typically used for the treatment of various inflammatory conditions, including infectious diseases. However, its effect on the intestinal mucosa, a microenvironment known to be physiologically hypoxic, remains unclear. Here, we demonstrated that daily treatment with hyperbaric oxygen affects gut microbiome composition, worsening antibiotic-induced dysbiosis. Accordingly, HBO-treated mice were more susceptible to Clostridioides difficile infection (CDI), an enteric pathogen highly associated with antibiotic-induced colitis. These observations were closely linked with a decline in the level of microbiota-derived short-chain fatty acids (SCFAs). Butyrate, a SCFA produced primarily by anaerobic microbial species, mitigated HBO-induced susceptibility to CDI and increased epithelial barrier integrity by improving group 3 innate lymphoid cell (ILC3) responses. Mice displaying tissue-specific deletion of HIF-1 in RORγt-positive cells exhibited no protective effect of butyrate during CDI. In contrast, the reinforcement of HIF-1 signaling in RORγt-positive cells through the conditional deletion of VHL mitigated disease outcome, even after HBO therapy. Taken together, we conclude that HBO induces intestinal dysbiosis and impairs the production of SCFAs affecting the HIF-1α-IL-22 axis in ILC3 and worsening the response of mice to subsequent C. difficile infection.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Oxigenoterapia Hiperbárica , Ratones , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Inmunidad Innata , Oxigenoterapia Hiperbárica/efectos adversos , Interleucina-22 , Disbiosis/terapia , Linfocitos , Butiratos/farmacología , Ácidos Grasos Volátiles/farmacología , Antibacterianos/farmacología
2.
J Nutr Biochem ; 120: 109409, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37364792

RESUMEN

Tissue/cellular actions of butyrate on energy metabolism and intestinal barrier in normal metabolic conditions or prediabetes are still unclear. In this work, we investigated the beneficial effect of dietary supplementation with sodium butyrate on energy metabolism, body mass composition, and intestinal epithelial barrier mediated by tight junction (TJ) in chow diet-fed normal and high-fat diet (HF)-fed prediabetic mice, considering the well-known butyrate action as an epigenetic and inflammatory regulator. Butyrate significantly reduced the fat/lean mass ratio, slightly ameliorated dyslipidemia, restored oral glucose tolerance, and increased basal energy expenditure in prediabetic HF-fed mice but had no effect on control animals. Such effects were observed in the absence of significant alterations in the hypothalamic expression of orexigenic and anorexigenic genes and motor activity. Also, butyrate suppressed the whitening effect of HF on brown adipose tissue but did not affect cell bioenergetics in immortalized UCP1-positive adipocytes in vitro. Butyrate reinforced the intestinal epithelial barrier in HF-fed mice and in Caco-2 monolayers, which involved higher trafficking of TJ proteins to the cell-cell contact region of the intestinal epithelia, without affecting TJ gene expression or the acetylation level of histones H3 and H4 in vivo. All metabolic and intestinal effects of butyrate in prediabetic mice occurred in the absence of detectable changes in systemic or local inflammation, or alterations in endotoxemia markers. Butyrate has no effect on chow diet-fed mice but, in the context of HF-induced prediabetes, it prevents metabolic and intestinal dysfunctions independently of its anti-inflammatory and epigenetic actions.


Asunto(s)
Estado Prediabético , Humanos , Ratones , Animales , Estado Prediabético/metabolismo , Células CACO-2 , Uniones Estrechas/metabolismo , Ácido Butírico/farmacología , Metabolismo Energético , Antiinflamatorios/metabolismo , Epigénesis Genética , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos
3.
J Cell Physiol ; 234(11): 19852-19865, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30963563

RESUMEN

Wnt proteins act mainly as paracrine signals regulating cell proliferation and differentiation. The canonical Wnt pathway has recently been associated with pancreas development and the onset of type 2 diabetes in rodent and human but the underlying mechanisms are still unclear. The aim of this work was threefold: (a) to screen for Wnt expressed by murine pancreas/islet cells, (b) to investigate whether the Wnt gene expression profile can be changed in hyperplastic islets from type 2 prediabetic mice (fed a high-fat diet), and (c) to verify whether soluble factors (namely Wnts) released by pancreatic islets affect insulin secretion and proliferation of a beta-cell line in vitro condition. The majority of the Wnt subtypes are expressed by islet cells, such as Wnts 2, 2b, 3, 3a, 4, 5a, 5b, 6, 7a, 7b, 8a, 8b, 9a, 9b, and 11, while in the whole pancreas homogenates were found the same subtypes, except Wnts 3, 6, 7a, and 7b. Among all the Wnts, the Wnts 3a and 5b showed a significantly increased gene expression in hyperplastic islets from prediabetic mice compared with those from control mice. Furthermore, we observed that coculture with hyperplastic or nonhyperplastic islets did not change the secretory function of the mouse insulinoma clone 6 (MIN6) beta cells but induced a significant increase in cell proliferation in this lineage, which was partially blocked by the IWR-1 and IWP-2 Wnt inhibitors. In conclusion, we demonstrated that murine pancreas/islet cells can secrete Wnts, and that islet-released Wnts may participate in the regulation of beta-cell mass under normal and prediabetic conditions.


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Proteínas Wnt/metabolismo , Tejido Adiposo/metabolismo , Animales , Línea Celular , Proliferación Celular , Dieta Alta en Grasa , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secreción de Insulina , Masculino , Ratones Endogámicos C57BL , Estado Prediabético/genética , Estado Prediabético/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Wnt/genética , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...