Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Entomol ; 59(6): 2053-2065, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36256531

RESUMEN

In the southeastern United States, biting midges transmit agents of hemorrhagic diseases that are enzootic among white-tailed deer (Odocoileus virginianus (Zimmermann), Artiodactyla: Cervidae). Culicoides sonorensis Wirth and Jones (Diptera: Ceratopogonidae), the only confirmed vector of epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) in the United States, is rarely collected in the Southeast, implying that other Culicoides Latreille species act as vectors. Despite multiple surveillance studies, the influence of trapping habitat and light wavelength on Culicoides sampling has yet to be investigated in Alabama. This study sampled Culicoides species at a deer research facility using CO2-baited CDC light traps with three distinct wavelengths. Traps were rotated within three habitats to examine impacts of habitat type and light wavelength on Culicoides abundance and parity status. For most species, midges were more abundant in a pine forest compared to a hardwood-forest riparian zone or a lightly wooded area adjacent to a seasonal pond. The pine forest generally had negative effects on parity status, suggesting that most females in this habitat were foraging for their first bloodmeal. Ultraviolet (UV) black-light (350 nm-360 nm) attracted more midges than incandescent light or UV LED light (385 nm-395 nm), but wavelength had less of an effect on parity than habitat. This study indicates that light wavelength and habitat significantly influence Culicoides sampling outcomes, and that when collecting parous females is desired (e.g., EHDV/BTV surveillance), targeting areas around oviposition sites may be a better strategy than trapping where midges are most abundant.


Asunto(s)
Virus de la Lengua Azul , Ceratopogonidae , Ciervos , Virus de la Enfermedad Hemorrágica Epizoótica , Femenino , Animales , Alabama , Ecosistema
2.
Mol Ecol ; 31(9): 2545-2561, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35229389

RESUMEN

Virome studies among metazoans have revealed the ubiquity of RNA viruses in animals, contributing to a fundamental rethinking of the relationships between organisms and their microbiota. Mosquito viromes, often scrutinized due to their public health relevance, may also provide insight into broadly applicable concepts, such as a "core virome," a set of viruses consistently associated with a host species or population that may fundamentally impact its basic biology. A subset of mosquito-associated viruses (MAVs) could comprise such a core, and MAVs can be categorized as (i) arboviruses, which alternate between mosquito and vertebrate hosts, (ii) insect-specific viruses, which cannot replicate in vertebrate cells, and (iii) viruses with unknown specificity. MAVs have been widely characterized in the disease vector Aedes aegypti, and the occurrence of a core virome in this species has been proposed but remains unclear. Using a wild population previously surveyed for MAVs and a common laboratory strain, we investigated viromes in reproductive tissue via metagenomic RNA sequencing. Virome composition varied across samples, but four groups comprised >97% of virus sequences: a novel partiti-like virus (Partitiviridae), a toti-like virus (Totiviridae), unclassified Riboviria, and four orthomyxo-like viruses (Orthormyxoviridae). Whole or partial genomes for the partiti-like virus, toti-like virus, and one orthomyxo-like virus were assembled and analysed phylogenetically. Multigenerational maintenance of these MAVs was confirmed by RT-PCR, indicating vertical transmission as a mechanism for persistence. This study provides fundamental information regarding MAV ecology and variability in A. aegypti and the potential for vertically maintained core viromes at the population level.


Asunto(s)
Aedes , Virus de Insectos , Virus ARN , Virus , Aedes/genética , Animales , Virus de Insectos/genética , Mosquitos Vectores/genética , Filogenia , Viroma/genética
3.
Parasit Vectors ; 15(1): 56, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164867

RESUMEN

BACKGROUND: Plasmodium ovale is a neglected malarial parasite that can form latent hypnozoites in the human liver. Over the last decade, molecular surveillance studies of non-falciparum malaria in Africa have highlighted that P. ovale is circulating below the radar, including areas where Plasmodium falciparum is in decline. To eliminate malaria where P. ovale is endemic, a better understanding of its epidemiology, asymptomatic carriage, and transmission biology is needed. METHODS: We performed a pilot study on P. ovale transmission as part of an ongoing study of human-to-mosquito transmission of P. falciparum from asymptomatic carriers. To characterize the malaria asymptomatic reservoir, cross-sectional qPCR surveys were conducted in Bagamoyo, Tanzania, over three transmission seasons. Positive individuals were enrolled in transmission studies of P. falciparum using direct skin feeding assays (DFAs) with Anopheles gambiae s.s. (IFAKARA strain) mosquitoes. For a subset of participants who screened positive for P. ovale on the day of DFA, we incubated blood-fed mosquitoes for 14 days to assess sporozoite development. RESULTS: Molecular surveillance of asymptomatic individuals revealed a P. ovale prevalence of 11% (300/2718), compared to 29% (780/2718) for P. falciparum. Prevalence for P. ovale was highest at the beginning of the long rainy season (15.5%, 128/826) in contrast to P. falciparum, which peaked later in both the long and short rainy seasons. Considering that these early-season P. ovale infections were low-density mono-infections (127/128), we speculate many were due to hypnozoite-induced relapse. Six of eight P. ovale-infected asymptomatic individuals who underwent DFAs successfully transmitted P. ovale parasites to A. gambiae. CONCLUSIONS: Plasmodium ovale is circulating at 4-15% prevalence among asymptomatic individuals in coastal Tanzania, largely invisible to field diagnostics. A different seasonal peak from co-endemic P. falciparum, the capacity to relapse, and efficient transmission to Anopheles vectors likely contribute to its persistence amid control efforts focused on P. falciparum.


Asunto(s)
Anopheles , Malaria Falciparum , Plasmodium ovale , Animales , Estudios Transversales , Humanos , Malaria Falciparum/epidemiología , Mosquitos Vectores , Proyectos Piloto , Plasmodium falciparum , Plasmodium ovale/genética , Prevalencia , Tanzanía/epidemiología
4.
Viruses ; 13(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34835038

RESUMEN

Dengue viruses (DENVs) cause the greatest public health burden globally among the arthropod-borne viruses. DENV transmission risk has also expanded from tropical to subtropical regions due to the increasing range of its principal mosquito vector, Aedes aegypti. Focal outbreaks of dengue fever (dengue) in the state of Florida (FL) in the USA have increased since 2009. However, little is known about the competence of Ae. aegypti populations across different regions of FL to transmit DENVs. To understand the effects of DENV genotype and serotype variations on vector susceptibility and transmission potential in FL, we orally infected a colony of Ae. aegypti (Orlando/ORL) with low passage or laboratory DENV-1 through -4. Low passage DENVs were more infectious to and had higher transmission potential by ORL mosquitoes. We used these same DENVs to examine natural Ae. aegypti populations to determine whether spatial distributions correlated with differential vector competence. Vector competence across all DENV serotypes was greater for mosquitoes from areas with the highest dengue incidence in south FL compared to north FL. Vector competence for low passage DENVs was significantly higher, revealing that transmission risk is influenced by virus/vector combinations. These data support a targeted mosquito-plus-pathogen screening approach to more accurately estimate DENV transmission risk.


Asunto(s)
Aedes/virología , Virus del Dengue/fisiología , Dengue/transmisión , Mosquitos Vectores/virología , Aedes/genética , Animales , Dengue/epidemiología , Virus del Dengue/clasificación , Florida/epidemiología , Tracto Gastrointestinal/virología , Genotipo , Geografía , Humanos , Mosquitos Vectores/genética , Saliva/virología , Serogrupo
5.
mSphere ; 5(2)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350095

RESUMEN

The incidence of locally acquired dengue infections increased during the last decade in the United States, compelling a sustained research effort concerning the dengue mosquito vector, Aedes aegypti, and its microbiome, which has been shown to influence virus transmission success. We examined the "metavirome" of four populations of Aedes aegypti mosquitoes collected in 2016 to 2017 in Manatee County, FL. Unexpectedly, we discovered that dengue virus serotype 4 (DENV4) was circulating in these mosquito populations, representing the first documented case of such a phenomenon in the absence of a local DENV4 human case in this county over a 2-year period. We confirmed that all of the mosquito populations carried the same DENV4 strain, assembled its full genome, validated infection orthogonally by reverse transcriptase PCR, traced the virus origin, estimated the time period of its introduction to the Caribbean region, and explored the viral genetic signatures and mosquito-specific virome associations that potentially mediated DENV4 persistence in mosquitoes. We discuss the significance of prolonged maintenance of the DENV4 infections in A. aegypti that occurred in the absence of a DENV4 human index case in Manatee County with respect to the inability of current surveillance paradigms to detect mosquito vector infections prior to a potential local outbreak.IMPORTANCE Since 1999, dengue outbreaks in the continental United States involving local transmission have occurred only episodically and only in Florida and Texas. In Florida, these episodes appear to be coincident with increased introductions of dengue virus into the region through human travel and migration from countries where the disease is endemic. To date, the U.S. public health response to dengue outbreaks has been largely reactive, and implementation of comprehensive arbovirus surveillance in advance of predictable transmission seasons, which would enable proactive preventative efforts, remains unsupported. The significance of our finding is that it is the first documented report of DENV4 transmission to and maintenance within a local mosquito vector population in the continental United States in the absence of a human case during two consecutive years. Our data suggest that molecular surveillance of mosquito populations in high-risk, high-tourism areas of the United States may enable proactive, targeted vector control before potential arbovirus outbreaks.


Asunto(s)
Aedes/virología , Virus del Dengue/clasificación , Mosquitos Vectores/virología , Viroma , Animales , Virus del Dengue/aislamiento & purificación , Brotes de Enfermedades , Femenino , Florida , Genoma Viral , Estaciones del Año , Serogrupo
6.
J Med Entomol ; 57(5): 1627-1634, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32280994

RESUMEN

The mosquito Culiseta melanura (Coquillett) is the primary enzootic vector of eastern equine encephalitis virus (EEEV), a zoonotic Alphavirus endemic to eastern North America. In its northern range, Cs. melanura is considered a strict avian biter, transmitting EEEV among susceptible birds in a cycle of enzootic amplification. In its southern range, however, Cs. melanura is more general in host use, feeding heavily upon birds but also reptiles and mammals. The goal of this study was to better understand how host use of Cs. melanura changes throughout the year in Florida, where year-round EEEV transmission is observed. Mosquitoes were sampled in 2018 from nine sites across three central Florida counties. In total, 213 Cs. melanura bloodmeals were identified by PCR consisting of 39 species of birds, reptiles, and mammals. Avian bloodmeals were prominent throughout the year (range = 30-85%), and songbirds were a large portion of identified bloodmeals (37.1%). Reptiles surpassed birds only in spring (April-June), and brown anole (Anolis sagrei Duméril and Bibron, 1837 [Reptilia: Dactyloidae]) was the most commonly detected single host species (22.1% overall). Mammalian bloodmeals were mainly observed in summer, with humans being the most fed on mammal (12.7% overall). This study reveals that in southern foci of EEEV transmission, Cs. melanura host use varies throughout the year with reptiles providing the majority of blood meals in spring (51.3%), and birds are fed on more than other host groups during all other seasons (50.6-70.1%). In addition, feeding on mammals increases during summer months, which may implicate Cs. melanura in epizootic transmission in Florida.


Asunto(s)
Aves , Culicidae , Lagartos , Mamíferos , Mosquitos Vectores , Animales , Bovinos , ADN/sangre , Conducta Alimentaria , Femenino , Florida , Humanos , Ratas , Estaciones del Año
7.
J Med Entomol ; 57(3): 901-907, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-31901168

RESUMEN

The Simulium damnosum Theobald complex transmits Onchocerca volvulus Leuckart (Spirurida: Onchocercidae), the causative agent of onchocerciasis. Recent evidence suggests that control efforts have strongly suppressed parasite populations, but vector surveillance is needed in parts of Africa where the disease remains endemic. Here, studies on biting rates and infectivity status of suspected vector species were conducted in three onchocerciasis-endemic areas, namely Iwo, Ede, and Obokun, in Osun State, Nigeria. A total of 3,035 black flies were collected between October 2014 and September 2016, and examined for parity and parasites using standard methods. A separate collection of 2,000 black flies was pool-screened for infectivity using polymerase chain reaction (PCR) amplification of the O-150 marker. Results showed that parous flies were significantly less common than nulliparous flies with overall parous rates of 8.02% in Iwo and 35.38% in Ede at the end of the study period. Obokun had a parous rate of 22.22% obtained in the first year only. None of the dissected parous flies were infected with O. volvulus and PCR assays showed no amplification of O-150 O. volvulus-specific repeats in head and body pools. However, annual biting rates exceeded the World Health Organization threshold of 1,000 bites/person/yr. Thus it appears that, with such high rates of biting, even low levels of vector infection can sustain onchocerciasis in African communities.


Asunto(s)
Mordeduras y Picaduras de Insectos , Insectos Vectores/parasitología , Onchocerca volvulus/aislamiento & purificación , Simuliidae/fisiología , Simuliidae/parasitología , Animales , Conducta Alimentaria , Femenino , Nigeria , Oncocercosis/transmisión , Paridad
8.
Insects ; 10(2)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717390

RESUMEN

Dengue virus (DENV) is transmitted by mosquitoes and is a major public health concern. The study of innate mosquito defense mechanisms against DENV have revealed crucial roles for the Toll, Imd, JAK-STAT, and RNAi pathways in mediating DENV in the mosquito. Often overlooked in such studies is the role of intrinsic cellular defense mechanisms that we hypothesize to work in concert with the classical immune pathways to affect organismal defense. Our understanding of the molecular interaction of DENV with mosquito host cells is limited, and we propose to expand upon the recent results from a genome-scale, small interfering RNA (siRNA)-based study that identified mammalian host proteins associated with resistance to dengue/West Nile virus (DENV/WNV) infection. The study identified 22 human DENV/WNV resistance genes (DVR), and we hypothesized that a subset would be functionally conserved in Aedes aegypti mosquitoes, imparting cellular defense against flaviviruses in this species. We identified 12 homologs of 22 human DVR genes in the Ae. aegypti genome. To evaluate their possible role in cellular resistance/antiviral defense against DENV, we used siRNA silencing targeted against each of the 12 homologs in an Ae. aegypti cell line (Aag2) infected with DENV2 and identified that silencing of the two candidates, AeFKBP1 and AeATCAY, homologs of human FKBP1B and ATCAY, were associated with a viral increase. We then used dsRNA to silence each of the two genes in adult mosquitoes to validate the observed antiviral functions in vivo. Depletion of AeFKBP1 or AeATCAY increased viral dissemination through the mosquito at 14 days post-infection. Our results demonstrated that AeFKBP1 and AeATCAY mediate resistance to DENV akin to what has been described for their homologs in humans. AeFKBP1 and AeATCAY provide a rare opportunity to elucidate a DENV-resistance mechanism that may be evolutionarily conserved between humans and Ae. aegypti.

9.
ACS Chem Biol ; 11(12): 3461-3472, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27978709

RESUMEN

The evolution of drug resistance is a recurrent problem that has plagued efforts to treat and control malaria. Recent emergence of artemisinin resistance in Southeast Asia underscores the need to develop novel antimalarials and identify new targetable pathways in Plasmodium parasites. Transmission-blocking approaches, which typically target gametocytes in the host bloodstream or parasite stages in the mosquito gut, are recognized collectively as a strategy that when used in combination with antimalarials that target erythrocytic stages will not only cure malaria but will also prevent subsequent transmission. We tested four derivatives of (+)-usnic acid, a metabolite isolated from lichens, for transmission-blocking activity against Plasmodium falciparum using the standard membrane feeding assay. For two of the derivatives, BT37 and BT122, we observed a consistent dose-response relationship between concentration in the blood meal and oocyst intensity in the midgut. To explore their mechanism of action, we used the murine model Plasmodium berghei and found that both derivatives prevent ookinete maturation. Using fluorescence microscopy, we demonstrated that in the presence of each compound zygote vitality was severely affected, and those that did survive failed to elongate and mature into ookinetes. The observed phenotypes were similar to those described for mutants of specific kinases (NEK2/NEK4) and of inner membrane complex 1 (IMC1) proteins, which are all vital to the zygote-to-ookinete transition. We discuss the implications of our findings and our high-throughput screening approach to identifying next generation, transmission-blocking antimalarials based on the scaffolds of these (+)-usnic acid derivatives.


Asunto(s)
Anopheles/parasitología , Antimaláricos/farmacología , Benzofuranos/farmacología , Malaria/prevención & control , Malaria/transmisión , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Benzofuranos/química , Línea Celular , Descubrimiento de Drogas , Femenino , Insectos Vectores/parasitología , Ratones , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Ratas , Cigoto/efectos de los fármacos , Cigoto/crecimiento & desarrollo
10.
Antimicrob Agents Chemother ; 60(4): 2108-17, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26787692

RESUMEN

Parthenin and parthenolide are natural products that are closely related in structure to artemisinin, which is also a sesquiterpene lactone (SQL) and one of the most important antimalarial drugs available. Parthenin, like artemisinin, has an effect onPlasmodiumblood stage development. We extended the evaluation of parthenin as a potential therapeutic for the transmissible stages ofPlasmodium falciparumas it transitions between human and mosquito, with the aim of gaining potential mechanistic insight into the inhibitory activity of this compound. We posited that if parthenin targets different biological pathways in the parasite, this in turn could pave the way for the development of druggable compounds that could prevent the spread of artemisinin-resistant parasites. We examined parthenin's effect on male gamete activation and the ookinete-to-oocyst transition in the mosquito as well as on stage V gametocytes that are present in peripheral blood. Parthenin arrested parasite development for each of the stages tested. The broad inhibitory properties of parthenin on the evaluated parasite stages may suggest different mechanisms of action between parthenin and artemisinin. Parthenin's cytotoxicity notwithstanding, its demonstrated activity in this study suggests that structurally related SQLs with a better safety profile deserve further exploration. We used our battery of assays to test parthenolide, which has a more compelling safety profile. Parthenolide demonstrated activity nearly identical to that of parthenin againstP. falciparum, highlighting its potential as a possible transmission-blocking drug scaffold. We discuss the context of the evidence with respect to the next steps toward expanding the current antimalarial arsenal.


Asunto(s)
Antimaláricos/farmacología , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/prevención & control , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Sesquiterpenos/farmacología , Animales , Anopheles/parasitología , Artemisininas/farmacología , Resistencia a Medicamentos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Femenino , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Concentración 50 Inhibidora , Malaria/parasitología , Malaria/transmisión , Masculino , Ratones , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo
11.
Nat Struct Mol Biol ; 22(7): 532-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26075520

RESUMEN

Mosquito-based malaria transmission-blocking vaccines (mTBVs) target midgut-surface antigens of the Plasmodium parasite's obligate vector, the Anopheles mosquito. The alanyl aminopeptidase N (AnAPN1) is the leading mTBV immunogen; however, AnAPN1's role in Plasmodium infection of the mosquito and how anti-AnAPN1 antibodies functionally block parasite transmission have remained elusive. Here we present the 2.65-Å crystal structure of AnAPN1 and the immunoreactivity and transmission-blocking profiles of three monoclonal antibodies (mAbs) to AnAPN1, including mAb 4H5B7, which effectively blocks transmission of natural strains of Plasmodium falciparum. Using the AnAPN1 structure, we map the conformation-dependent 4H5B7 neoepitope to a previously uncharacterized region on domain 1 and further demonstrate that nonhuman-primate neoepitope-specific IgG also blocks parasite transmission. We discuss the prospect of a new biological function of AnAPN1 as a receptor for Plasmodium in the mosquito midgut and the implications for redesigning the AnAPN1 mTBV.


Asunto(s)
Anopheles/enzimología , Anopheles/parasitología , Antígenos CD13/química , Antígenos CD13/inmunología , Malaria/transmisión , Plasmodium falciparum/fisiología , Animales , Anopheles/química , Anopheles/inmunología , Anticuerpos Monoclonales/inmunología , Dominio Catalítico , Cristalografía por Rayos X , Mapeo Epitopo , Humanos , Malaria/inmunología , Vacunas contra la Malaria/inmunología , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
12.
Mol Cell Proteomics ; 13(10): 2705-24, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25056935

RESUMEN

One of the critical gaps in malaria transmission biology and surveillance is our lack of knowledge about Plasmodium falciparum gametocyte biology, especially sexual dimorphic development and how sex ratios that may influence transmission from the human to the mosquito. Dissecting this process has been hampered by the lack of sex-specific protein markers for the circulating, mature stage V gametocytes. The current evidence suggests a high degree of conservation in gametocyte gene complement across Plasmodium, and therefore presumably for sex-specific genes as well. To better our understanding of gametocyte development and subsequent infectiousness to mosquitoes, we undertook a Systematic Subtractive Bioinformatic analysis (filtering) approach to identify sex-specific P. falciparum NF54 protein markers based on a comparison with the Dd2 strain, which is defective in producing males, and with syntenic male and female proteins from the reanalyzed and updated P. berghei (related rodent malaria parasite) gametocyte proteomes. This produced a short list of 174 male- and 258 female-enriched P. falciparum stage V proteins, some of which appear to be under strong diversifying selection, suggesting ongoing adaptation to mosquito vector species. We generated antibodies against three putative female-specific gametocyte stage V proteins in P. falciparum and confirmed either conserved sex-specificity or the lack of cross-species sex-partitioning. Finally, our study provides not only an additional resource for mass spectrometry-derived evidence for gametocyte proteins but also lays down the foundation for rational screening and development of novel sex-partitioned protein biomarkers and transmission-blocking vaccine candidates.


Asunto(s)
Biología Computacional/métodos , Estadios del Ciclo de Vida , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/análisis , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Plasmodium falciparum/metabolismo , Factores Sexuales
13.
Infect Genet Evol ; 28: 635-47, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24929123

RESUMEN

Novel strategies to directly thwart malaria transmission are needed to maintain the gains achieved by current control measures. Transmission-blocking interventions (TBIs), namely vaccines and drugs targeting parasite or mosquito molecules required for vector-stage parasite development, have been recognized as promising approaches for preventing malaria transmission. However, the number of TBI targets is limited and their degree of conservation among the major vector-parasite systems causing human disease is unclear. Therefore, discovery and characterization of novel proteins involved in vector-stage parasite development of Plasmodium falciparum and Plasmodium vivax is paramount. We mined the recent Anopheles gambiae midgut lipid raft proteome for putative mosquito-derived TBI targets and characterized a secreted glycoconjugate of unknown function, AgSGU. We analyzed molecular variation in this protein among a range of anopheline mosquitoes, determined its transcriptomic and proteomic profiles, and conducted both standard and direct membrane feeding assays with P. falciparum (lab/field) and P. vivax (field) in An. gambiae and Anopheles dirus. We observed that α-AgSGU antibodies significantly reduced midgut infection intensity for both lab and field isolates of P. falciparum in An. gambiae and An. dirus. However, no transmission-reducing effects were noted when comparable concentrations of antibodies were included in P. vivax-infected blood meals. Although antibodies against AgSGU exhibit transmission-reducing activity, the high antibody titer required for achieving 80% reduction in oocyst intensity precludes its consideration as a malaria mosquito-based TBI candidate. However, our results suggest that P. falciparum and P. vivax ookinetes use a different repertoire of midgut surface glycoproteins for invasion and that α-AgSGU antibodies, as well as antibodies to other mosquito-midgut microvillar surface proteins, may prove useful as tools for interrogating Plasmodium-mosquito interactions.


Asunto(s)
Anopheles/metabolismo , Anopheles/parasitología , Proteínas de Insectos/metabolismo , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Plasmodium falciparum/patogenicidad , Plasmodium vivax/patogenicidad , Secuencia de Aminoácidos , Animales , Anopheles/genética , Evolución Molecular , Tracto Gastrointestinal/metabolismo , Expresión Génica , Variación Genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Selección Genética , Alineación de Secuencia
14.
Infect Immun ; 82(2): 818-29, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24478095

RESUMEN

Malaria transmission-blocking vaccines (TBVs) represent a promising approach for the elimination and eradication of this disease. AnAPN1 is a lead TBV candidate that targets a surface antigen on the midgut of the obligate vector of the Plasmodium parasite, the Anopheles mosquito. In this study, we demonstrated that antibodies targeting AnAPN1 block transmission of Plasmodium falciparum and Plasmodium vivax across distantly related anopheline species in countries to which malaria is endemic. Using a biochemical and immunological approach, we determined that the mechanism of action for this phenomenon stems from antibody recognition of a single protective epitope on AnAPN1, which we found to be immunogenic in murine and nonhuman primate models and highly conserved among anophelines. These data indicate that AnAPN1 meets the established target product profile for TBVs and suggest a potential key role for an AnAPN1-based panmalaria TBV in the effort to eradicate malaria.


Asunto(s)
Anopheles/parasitología , Transmisión de Enfermedad Infecciosa/prevención & control , Proteínas de Insectos/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Malaria Vivax/prevención & control , Animales , Femenino , Proteínas de Insectos/administración & dosificación , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Masculino , Ratones , Ratones Endogámicos BALB C
15.
PLoS Pathog ; 9(11): e1003757, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278017

RESUMEN

Malaria transmission-blocking (T-B) interventions are essential for malaria elimination. Small molecules that inhibit the Plasmodium ookinete-to-oocyst transition in the midgut of Anopheles mosquitoes, thereby blocking sporogony, represent one approach to achieving this goal. Chondroitin sulfate glycosaminoglycans (CS-GAGs) on the Anopheles gambiae midgut surface are putative ligands for Plasmodium falciparum ookinetes. We hypothesized that our synthetic polysulfonated polymer, VS1, acting as a decoy molecular mimetic of midgut CS-GAGs confers malaria T-B activity. In our study, VS1 repeatedly reduced midgut oocyst development by as much as 99% (P<0.0001) in mosquitoes fed with P. falciparum and Plasmodium berghei. Through direct-binding assays, we observed that VS1 bound to two critical ookinete micronemal proteins, each containing at least one von Willebrand factor A (vWA) domain: (i) circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP) and (ii) vWA domain-related protein (WARP). By immunofluorescence microscopy, we observed that VS1 stains permeabilized P. falciparum and P. berghei ookinetes but does not stain P. berghei CTRP knockouts or transgenic parasites lacking the vWA domains of CTRP while retaining the thrombospondin repeat region. We produced structural homology models of the first vWA domain of CTRP and identified, as expected, putative GAG-binding sites on CTRP that align closely with those predicted for the human vWA A1 domain and the Toxoplasma gondii MIC2 adhesin. Importantly, the models also identified patches of electropositive residues that may extend CTRP's GAG-binding motif and thus potentiate VS1 binding. Our molecule binds to a critical, conserved ookinete protein, CTRP, and exhibits potent malaria T-B activity. This study lays the framework for a high-throughput screen of existing libraries of safe compounds to identify those with potent T-B activity. We envision that such compounds when used as partner drugs with current antimalarial regimens and with RTS,S vaccine delivery could prevent the transmission of drug-resistant and vaccine-breakthrough strains.


Asunto(s)
Anopheles/parasitología , Materiales Biomiméticos , Glicosaminoglicanos/metabolismo , Intestinos/parasitología , Oocistos/metabolismo , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Humanos
16.
Mol Cell Proteomics ; 12(1): 120-31, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23082028

RESUMEN

Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the "model" African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax-An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.


Asunto(s)
Anopheles/genética , Biología Computacional , Proteínas de Insectos/análisis , Insectos Vectores/genética , Proteoma/análisis , ARN/análisis , Secuencia de Aminoácidos , Animales , Anopheles/parasitología , Cromatografía Liquida , Bases de Datos de Proteínas , Interacciones Huésped-Parásitos , Humanos , Proteínas de Insectos/química , Insectos Vectores/parasitología , Malaria/parasitología , Microvellosidades , Plasmodium falciparum , Plasmodium vivax , Proteómica , Espectrometría de Masas en Tándem , Transcriptoma
17.
Malar J ; 10: 10, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21235783

RESUMEN

BACKGROUND: Malaria vector control in Africa depends upon effective insecticides in bed nets and indoor residual sprays. This study investigated the extent of insecticide resistance in Anopheles gambiae s.l., Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya where ownership of insecticide-treated bed nets has risen steadily from the late 1990s to 2010. Temporal and spatial variation in the frequency of a knock down resistance (kdr) allele in A. gambiae s.s. was quantified, as was variation in phenotypic resistance among geographic populations of A. gambiae s.l. METHODS: To investigate temporal variation in kdr frequency, individual specimens of A. gambiae s.s. from two sentinel sites were genotyped using RT-PCR from 1996-2010. Spatial variation in kdr frequency, species composition, and resistance status were investigated in additional populations of A. gambiae s.l. sampled in western Kenya in 2009 and 2010. Specimens were genotyped for kdr as above and identified to species via conventional PCR. Field-collected larvae were reared to adulthood and tested for insecticide resistance using WHO bioassays. RESULTS: Anopheles gambiae s.s. showed a dramatic increase in kdr frequency from 1996 - 2010, coincident with the scale up of insecticide-treated nets. By 2009-2010, the kdr L1014S allele was nearly fixed in the A. gambiae s.s. population, but was absent in A. arabiensis. Near Lake Victoria, A. arabiensis was dominant in samples, while at sites north of the lake A. gambiae s.s was more common but declined relative to A. arabiensis from 2009 to 2010. Bioassays demonstrated that A. gambiae s.s. had moderate phenotypic levels of resistance to DDT, permethrin and deltamethrin while A. arabiensis was susceptible to all insecticides tested. CONCLUSIONS: The kdr L1014S allele has approached fixation in A. gambiae s.s. populations of western Kenya, and these same populations exhibit varying degrees of phenotypic resistance to DDT and pyrethroid insecticides. The near absence of A. gambiae s.s. from populations along the lakeshore and the apparent decline in other populations suggest that insecticide-treated nets remain effective against this mosquito despite the increase in kdr allele frequency. The persistence of A. arabiensis, despite little or no detectable insecticide resistance, is likely due to behavioural traits such as outdoor feeding and/or feeding on non-human hosts by which this species avoids interaction with insecticide-treated nets.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/genética , Resistencia a Medicamentos , Proteínas de Insectos/genética , Insecticidas/farmacología , Sustitución de Aminoácidos/genética , Animales , Bovinos , Preescolar , Femenino , Frecuencia de los Genes , Geografía , Humanos , Lactante , Recién Nacido , Kenia , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
18.
Malar J ; 9: 62, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20187956

RESUMEN

BACKGROUND: High coverage of insecticide-treated bed nets in Asembo and low coverage in Seme, two adjacent communities in western Nyanza Province, Kenya; followed by expanded coverage of bed nets in Seme, as the Kenya national malaria programme rolled out; provided a natural experiment for quantification of changes in relative abundance of two primary malaria vectors in this holoendemic region. Both belong to the Anopheles gambiae sensu lato (s.l.) species complex, namely A. gambiae sensu stricto (s.s.) and Anopheles arabiensis. Historically, the former species was proportionately dominant in indoor resting collections of females. METHODS: Data of the relative abundance of adult A. gambiae s.s. and A. arabiensis sampled from inside houses were obtained from the literature from 1970 to 2002 for sites west of Kisumu, Kenya, to the region of Asembo ca. 50 km from the city. A sampling transect was established from Asembo (where bed net use was high due to presence of a managed bed net distribution programme) eastward to Seme, where no bed net programme was in place. Adults of A. gambiae s.l. were sampled from inside houses along the transect from 2003 to 2009, as were larvae from nearby aquatic habitats, providing data over a nearly 40 year period of the relative abundance of the two species. Relative proportions of A. gambiae s.s. and A. arabiensis were determined for each stage by identifying species by the polymerase chain reaction method. Household bed net ownership was measured with surveys during mosquito collections. Data of blood host choice, parity rate, and infection rate for Plasmodium falciparum in A. gambiae s.s. and A. arabiensis were obtained for a sample from Asembo and Seme from 2005. RESULTS: Anopheles gambiae s.s. adult females from indoor collections predominated from 1970 to 1998 (ca. 85%). Beginning in 1999, A. gambiae s.s decreased proportionately relative to A. arabiensis, then precipitously declined to rarity coincident with increased bed net ownership as national bed net distribution programmes commenced in 2004 and 2006. By 2009, A. gambiae s.s. comprised proportionately ca. 1% of indoor collections and A. arabiensis 99%. In Seme compared to Asembo in 2003, proportionately more larvae were A. gambiae s.s., larval density was higher, and more larval habitats were occupied. As bed net use rose in Seme, the proportion of A. gambiae larvae declined as well. These trends continued to 2009. Parity and malaria infection rates were lower in both species in Asembo (high bed net use) compared to Seme (low bed net use), but host choice did not vary within species in both communities (predominantly cattle for A. arabiensis, humans for A. gambiae s.s.). CONCLUSIONS: A marked decline of the A. gambiae s.s. population occurred as household ownership of bed nets rose in a region of western Kenya over a 10 year period. The increased bed net coverage likely caused a mass effect on the composition of the A. gambiae s.l. species complex, resulting in the observed proportionate increase in A. arabiensis compared to its closely related sibling species, A. gambiae s.s. These observations are important in evaluating the process of regional malaria elimination, which requires sustained vector control as a primary intervention.


Asunto(s)
Anopheles/efectos de los fármacos , Mosquiteros Tratados con Insecticida , Insecticidas , Control de Mosquitos/métodos , Adulto , Animales , Bovinos , Femenino , Humanos , Insectos Vectores/genética , Kenia/epidemiología , Larva , Estudios Longitudinales , Masculino , Densidad de Población , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...