Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Life Sci Technol ; 6(1): 143-154, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38433966

RESUMEN

Globally, marine bioinvasions threaten marine ecosystem structure and function, with the Mediterranean Sea being one of the most affected regions. Such invasions are expected to increase due to climate change. We conducted a risk screening of marine organisms (37 fishes, 38 invertebrates, and 9 plants), both extant and 'horizon' (i.e., not present in the area but likely to enter it). Based on expert knowledge for the Eastern Adriatic Sea coasts of Slovenia, Croatia, and Montenegro, screenings were conducted under both current and predicted climate conditions indicating with an increase in sea surface temperature and salinity of the Adriatic Sea together with changes in precipitation regime. Our aims were to: (1) identify non-native extant and horizon marine species that may pose threats to native biodiversity and (2) evaluate the risk of invasiveness of the selected species under current and predicted climate conditions. Of the 84 species screened, there was an increase in those ranked as 'high risk' from 33 (39.3%) under current climate conditions and to 47 (56.0%) under global warming scenarios. For those ranked as 'very high' risk, the increase was from 6 (7.1%) to 21 (25.0%). Amongst the screened species, the already established high-risk species Pacific oyster Magallana gigas and Atlantic blue crab Callinectes sapidus represent a threat to ecosystem services. Given the under-representation of marine species in the current European Union List, the species we have ranked as high to very high risk should be included. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00196-9.

2.
Sci Rep ; 12(1): 9584, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688863

RESUMEN

Differences in crystallinity, structure and composition variation along the growing direction in gilthead seabream, Sparus aurata otoliths that inhabited different environments were determined to evaluate the correlation of spectroscopic and chemical data with the lifetime development and movement pattern. The Raman spectroscopy signal provided the characteristic bands whose Full Width at Half Maximum (FWHM) were used to track the signal variability. The FWHM showed an initial increase in the core area, followed by a decrease depicting two minima coinciding growth rings. The crystal discontinuity linked to annual rings was confirmed. The FWHM pattern followed cycle in the individual's activity. However, no significant correlation with FWHM and environmental factors although the slope of the FWHM variation distinguished aquaculture and costal groups from open sea and transitional, estuarine waters. Raman data were further correlated with morphological and elemental composition obtained via SEM-EDX and by LA-ICP-MS. SEM clearly confirmed CRM findings. Finally, multiparameter analysis of Ba/Ca concentrations obtained by LA-ICP-MS indicated the separation of groups associated with aquaculture and transitional waters due lowest variability in the elemental composition. Other groups are more variable possibly due to the water oligotrophic character and greater variability in prey availability in each environment. Results of the present study showed the additional potential of Raman spectroscopy as a complementary tool for inference of migration or origin of fish based on otolith composition and structure like other well-established technique.


Asunto(s)
Dorada , Animales , Acuicultura , Membrana Otolítica
3.
Sci Rep ; 10(1): 21078, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273675

RESUMEN

A multivariate analysis of juvenile fish community data, sampled at two nursery sites at an interval of 17 years (2000-early, and 2017-late), was conducted to elucidate the trends of change in littoral juvenile fish communities along the eastern Adriatic coast. Fishing, trophic and taxonomic composition to the community data were analysed for possible causality. The ichthyofaunal composition differed significantly for Site, Period and all interactions. According to the mMDS ordination plot, four groups of communities were defined, with clear cyclicity. No patterns were found in species composition between sites in the early period, while the observed community changes were governed by the same pattern at both sites in the late period. The species that contributed most to the observed changes were non-commercial, small, benthic resident fishes, such as gobiids and blennids, or those associated with canopy alga for shelter and feeding. The analysis correctly allocated samples based on community information to Sites and Periods. The data obtained provided an invaluable opportunity to test for the generality of potential patterns of change in littoral fish communities, suggesting that significantly modified juvenile fish communities may be the result of constant human embankment and marine infrastructure construction along the coast in recent decades, rather than climate change or fishing pressure, as generally considered.


Asunto(s)
Distribución Animal , Biodiversidad , Peces/fisiología , Animales , Biomasa , Peces/crecimiento & desarrollo
4.
Front Genet ; 11: 576023, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33365046

RESUMEN

Highly selective fishing has the potential to permanently change the characteristics within a population and could drive the decline of genetic diversity. European lobster is an intensively fished crustacean species in the Adriatic Sea which reaches high market value. Since knowledge of population structure and dynamics is important for effective fisheries management, in this study, we used 14 neutral microsatellites loci and partial mitochondrial COI region sequencing to explore population connectivity and genetic structure by comparing samples from the Adriatic Sea and the adjacent basins of the Mediterranean Sea. The obtained results suggest that neutral genetic diversity has not been significantly affected by decrease in population size due to overfishing, habitat degradation and other anthropogenic activities. Global genetic differentiation across all populations was low (F ST = 0.0062). Populations from the Adriatic Sea were panmictic, while genetic differentiation was found among populations from different Mediterranean basins. Observed gene flow for European lobster suggest that populations in the north eastern Adriatic act as a source for surrounding areas, emphasizing the need to protect these populations by establishing interconnected MPAs that will be beneficial for both fisheries and conservation management.

5.
Mar Pollut Bull ; 160: 111695, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33181962

RESUMEN

Coastal ecosystems are increasingly threatened by a wide range of human activities. Fish otolith chemistry, by creating a unique specific signature, can be used as a natural tag for determining life stage dispersal, spatial connectivity and population structure. In this study, we tested whether differences in otolith composition among juveniles of gilthead sea bream, Sparus aurata, could enable their proper allocation to polluted areas based on higher concentrations of elements related to contaminants. Otoliths were embedded, sectioned and analysed by LA-ICP-MS in line scan mode. Multivariate analysis confirmed clear separation between sites and elements. Samples from the site under the strongest anthropogenic impact from industrial and agricultural river input were characterized by higher values of Pb/Ca and Zn/Ca. However, these relatively low values likely do not have a negative effect on S. aurata recruitment, though they could serve for identifying the contribution of polluted nurseries to stock dynamics.


Asunto(s)
Dorada , Animales , Ecosistema , Contaminación Ambiental , Membrana Otolítica
6.
Mar Pollut Bull ; 147: 47-58, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30318309

RESUMEN

Port baseline surveys (PBS) provide species inventories in and around ports, with a focus on non-indigenous species that may have been introduced by vessels, primarily via ballast water. PBS are an essential tool to support effective management strategies for non-indigenous as well as native harmful aquatic organisms and pathogens (HAOP). This paper describes the methodology of PBS that were conducted in 12 Adriatic ports. The PBS employed existing protocols that were adapted to meet the characteristics of the Adriatic sites. Their results are reported in several papers included in this special issue, each of which is devoted to a specific community. An overview of existing surveys protocols - which provide valuable support to decision-making and to design effective monitoring of non-indigenous species - is also supplied.


Asunto(s)
Monitoreo Biológico/métodos , Especies Introducidas , Navíos , Animales , Organismos Acuáticos , Mar Mediterráneo , Encuestas y Cuestionarios , Microbiología del Agua
7.
Sci Rep ; 8(1): 676, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330368

RESUMEN

Using thirteen microsatellite loci for Mullus barbatus and Mullus surmuletus collected in the Mediterranean Sea, the biogeographic boundaries, genetic distribution among and within basins and the impact of prolonged exploitation in both species were investigated as a basis for understanding their population dynamics and for improving Mullus spp. stock management. Different level of diversity indices among these co-occurring species were obtained, with M. barbatus showing higher allele richness and higher mean observed and expected heterozygosity than M. surmuletus. Reduced contemporary effective population size (Ne) and M-ratio values found in both species likely reflects recent demographic changes, due to a combination of high fishing pressures, habitat fragmentation and naturally occurring fluctuations in population size. Different patterns of genetic connectivity among populations sampled within the Mediterranean were observed for both species. Higher genetic structure was found for M. barbatus as opposed to a more homogenous pattern observed in M. surmuletus samples. Adriatic populations, previously considered panmictic and isolated from other Mediterranean regions, showed geographical partitioning within the basin but also population connectivity with the northern Ionian and Tyrrhenian Seas. Our results highlight the need for temporal sampling in understanding the complex pattern of population connectivity in the Mediterranean, particularly for management purposes.


Asunto(s)
Repeticiones de Microsatélite , Perciformes/genética , Animales , Conservación de los Recursos Naturales , Ecosistema , Especiación Genética , Genética de Población , Mar Mediterráneo , Perciformes/fisiología , Densidad de Población , Dinámica Poblacional , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...