RESUMEN
The APOE gene, encoding apolipoprotein E, is a predictor of longevity and age-related diseases. Despite numerous genetic studies, the data on molecular mechanisms by which apolipoprotein E affects the human phenotype remain incomplete due to the structural properties of the protein. Recently, a number of studies have used in silico drug discovery techniques based on protein-ligand docking, further highlighting the issue of lacking 3D structure of apolipoprotein E. Using molecular dynamics simulation, we found that AlphaFold II models of apolipoprotein E conformationally significantly differ both from the only available NMR structure, 2L7B, and structures obtained through circular dichroism spectroscopy: the ε4 isoform lacks the salt bridge between R61 and E255, while the ε2 and ε3 isoforms have extensive networks of interdomain interactions. Our findings challenge the benefits of using AlphaFold II for obtaining starting conformations for molecular docking.
RESUMEN
Background: Cognitive impairment is an irreversible, aging-associated condition that robs people of their independence. The purpose of this study was to investigate possible causes of this condition and propose preventive options. Methods: We assessed cognitive status in long-living adults aged 90+ (n = 2,559) and performed a genome wide association study using two sets of variables: Mini-Mental State Examination scores as a continuous variable (linear regression) and cognitive status as a binary variable (> 24, no cognitive impairment; <10, impairment) (logistic regression). Results: Both variations yielded the same polymorphisms, including a well-known marker of dementia, rs429358in the APOE gene. Molecular dynamics simulations showed that this polymorphism leads to changes in the structure of alpha helices and the mobility of the lipid-binding domain in the APOE protein. Conclusion: These changes, along with higher LDL and total cholesterol levels, could be the mechanism underlying the development of cognitive impairment in older adults. However, this polymorphism is not the only determining factor in cognitive impairment. The polygenic risk score model included 45 polymorphisms (ROC AUC 69%), further confirming the multifactorial nature of this condition. Our findings, particularly the results of PRS modeling, could contribute to the development of early detection strategies for predisposition to cognitive impairment in older adults.