RESUMEN
Arthospira platensis and Spirulina platensis microalgae are a rich source of pro-health metabolites (% d.m.): proteins (50.0-71.3/46.0-63.0), carbohydrates (16.0-20.0/12.0-17.0), fats (0.9-14.2/6.4-14.3), polyphenolic compounds and phenols (7.3-33.2/7.8-44.5 and 4.2/0.3 mg GAE/g), and flavonoids (1.9/0.2 QUE/g) used in pharmaceutical and cosmetic formulations. This review summarises the research on the chemical profile, therapeutic effects in dermatological problems, application of Arthrospira and Spirulina microalgae, and contraindications to their use. The pro-health properties of these microalgae were analysed based on the relevant literature from 2019 to 2024. The antiviral mechanism of microalgal activity involves the inhibition of viral replication and enhancement of immunity. The anti-acne activity is attributed to alkaloids, alkanes, phenols, alkenes, phycocyanins, phthalates, tannins, carboxylic and phthalic acids, saponins, and steroids. The antibacterial activity generally depends on the components and structure of the bacterial cell wall. Their healing effect results from the inhibition of inflammatory and apoptotic processes, reduction of pro-inflammatory cytokines, stimulation of angiogenesis, and proliferation of fibroblasts and keratinocytes. The photoprotective action is regulated by amino acids, phlorotannins, carotenoids, mycosporins, and polyphenols inhibiting the production of tyrosinase, pro-inflammatory cytokines, and free oxygen radicals in fibroblasts and the stimulation of collagen production. Microalgae are promising molecular ingredients in innovative formulations of parapharmaceuticals and cosmetics used in the prophylaxis and therapy of dermatological problems. This review shows the application of spirulina-based commercial skin-care products as well as the safety and contraindications of spirulina use. Furthermore, the main directions for future studies of the pro-health suitability of microalgae exerting multidirectional effects on human skin are presented.
RESUMEN
Raspberry fruits are an important source of many biologically active chemical compounds exerting nutritional and pro-health effects. The study presents a comparative analysis of nutritionally important bioactive chemical compounds-polyphenols; flavonoids, including anthocyanins; vitamin C; amino acids; fatty acids; and primary metabolites-contained in the fruits of three biennial fruiting cultivars, R. idaeus 'Glen Ample', 'Laszka', and 'Radziejowa', i.e., common cultivars in Poland and Europe. The antioxidant activity of fresh fruits and juice was determined with five methods. The analyses revealed the strong free radical scavenging potential of the fruits and juice, confirmed by the high concentration of nutrients, e.g., polyphenols, anthocyanins, vitamin C, amino acids, and fatty acids. The antioxidant activity of the juice determined with the ferric reducing antioxidant power (FRAP) and OH radical methods was from 2.5 to 4.0 times higher than that of the fruits. The following orders of total polyphenol contents were established in the analyzed cultivars: 'Glen Ample' < 'Laszka' < 'Radziejowa' in the fruits and 'Glen Ample' < 'Radziejowa' < 'Laszka' in the juice. The highest antioxidant activity was exhibited by the 'Radziejowa' fruits. Given their high content of dietary fiber, the fruits of the analyzed raspberry cultivars can be consumed by dieting subjects. The concentrations of vitamin C (28-34 mg/100 g) and anthocyanins (20-34 mg/100 g) indicate the biological and pharmacological activity of these fruits. The main unsaturated fatty acids in the fruits were gamma-linoleic acid (C18:2n6c) and alpha-linolenic acid (C18:3n3), which neutralize excess free radicals. The amino acids nutritionally essential to humans were dominated by leucine, arginine, and phenylalanine. This is the first comparative analysis of the antioxidant activity of fruits and juice and the contents of selected active compounds in the fruits of biennial fruiting cultivars of R. idaeus, i.e., a highly commercialized crop in Europe.
RESUMEN
Rubi idaei fructus is a source of nutritionally important bioactive chemical compounds, mainly antioxidants, which strengthen the immune system and can be used in the prophylaxis and adjuvant therapies of many oxidative stress-induced diseases. There are no literature reports presenting a comprehensive comparative analysis of the antioxidant activity and nutritionally relevant metabolites contained in the fruits of repeat-fruiting raspberry cultivars, which are commonly grown in Europe. The aim of this study was to carry out a comparative analysis of the antioxidant potential (Folin-Ciocalteu, DPPH, FRAP), the content of selected primary and secondary metabolites, and the qualitative and quantitative composition of amino acids and fatty acids in the fruits of R. idaeus cv. 'Pokusa', 'Polana', and 'Polka'. The fruits of the analyzed cultivars have a low caloric value (171-219 kcal/100 g); low content of available carbohydrates (6-6.6%) and total carbohydrates (3.4-4.8%); and high levels of dietary fiber (4.7-5.8%), vitamin C (22.8-27 mg/100 g), anthocyanins (25.1-29.6 mg/100 g), and flavonoids (0.5-2.6 mg/100 g). The fruits were found to contain valuable unsaturated fatty acids (35-60%), especially MUFAs with dominant oleic, elaidic, palmitic, and erucic acids and PUFAs (α-linolenic, eicosapentaenoic, and linoleic acids). MUFAs from the ω-9 group accounted for 12-18%, whereas the content of PUFAs from the ω-3 and ω-6 groups was in the range of 15-23 and 6-21%, respectively. Exogenous amino acids, accounting for 56-62%, were dominated by leucine, phenylalanine, and lysine. The following order of the total polyphenolic content was established in the fresh fruit juice from the analyzed cultivars: 'Pokusa' < 'Polana' < 'Polka'. The different antioxidant capacity assays used in the study confirmed the high antioxidant potential of the fruits and fresh juice from the three R. idaeus cultivars. This indicates that raspberry fruits can serve as a source of nutrients and can be used as a valuable supplement in a healthy human diet and a raw material in the pharmaceutical and cosmetic industries.
RESUMEN
Psychotropic effect of Crocus sativus L. (family Iridaceae) biologically active chemical compounds are quite well documented and they can therefore be used in addition to the conventional pharmacological treatment of depression. This systematic review on antidepressant compounds in saffron crocus and their mechanisms of action and side effects is based on publications released between 1995−2022 and data indexed in 15 databases under the following search terms: antidepressant effect, central nervous system, Crocus sativus, cognitive impairement, crocin, crocetin, depression, dopamine, dopaminergic and serotonergic systems, picrocrocin, phytotherapy, neurotransmitters, safranal, saffron, serotonin, and biologically active compounds. The comparative analysis of the publications was based on 414 original research papers. The investigated literature indicates the effectiveness and safety of aqueous and alcoholic extracts and biologically active chemical compounds (alkaloids, anthocyanins, carotenoids, flavonoid, phenolic, saponins, and terpenoids) isolated from various organs (corms, leaves, flower petal, and stigmas) in adjuvant treatment of depression and anxiety. Monoamine reuptake inhibition, N-methyl-d-aspartate (NMDA) receptor antagonism, and gamma-aminobutyric acid (GABA)-α agonism are the main proposed mechanism of the antidepressant action. The antidepressant and neuroprotective effect of extract components is associated with their anti-inflammatory and antioxidant activity. The mechanism of their action, interactions with conventional drugs and other herbal preparations and the safety of use are not fully understood; therefore, further detailed research in this field is necessary. The presented results regarding the application of C. sativus in phytotherapy are promising in terms of the use of herbal preparations to support the treatment of depression. This is particularly important given the steady increase in the incidence of this disease worldwide and social effects.
RESUMEN
In nature, plants usually produce secondary metabolites as a defense mechanism against environmental stresses. Different stresses determine the chemical diversity of plant-specialized metabolism products. In this study, we applied an abiotic elicitor, i.e., NaCl, to enhance the biosynthesis and accumulation of phenolic secondary metabolites in Melissa officinalis L. Plants were subjected to salt stress treatment by application of NaCl solutions (0, 50, or 100 mM) to the pots. Generally, the NaCl treatments were found to inhibit the growth of plants, simultaneously enhancing the accumulation of phenolic compounds (total phenolics, soluble flavonols, anthocyanins, phenolic acids), especially at 100 mM NaCl. However, the salt stress did not disturb the accumulation of photosynthetic pigments and proper functioning of the PS II photosystem. Therefore, the proposed method of elicitation represents a convenient alternative to cell suspension or hydroponic techniques as it is easier and cheaper with simple application in lemon balm pot cultivation. The improvement of lemon balm quality by NaCl elicitation can potentially increase the level of health-promoting phytochemicals and the bioactivity of low-processed herbal products.
Asunto(s)
Melissa/fisiología , Fenoles/metabolismo , Fitoquímicos/metabolismo , Fenómenos Fisiológicos de las Plantas , Cloruro de Sodio/metabolismo , Biomasa , Melissa/efectos de los fármacos , Metabolismo Secundario , Cloruro de Sodio/farmacologíaRESUMEN
An increase in the content of secondary metabolites in herbal plants is desirable due to their therapeutic and nutraceutical properties. Therefore, the effects of foliar spray of 100 mg/L or 500 mg/L of chitosan lactate (ChL) on the accumulation of selected phenolics and physiological parameters of basil and lemon balm were investigated. In basil, the concentration of rosmarinic acid (RA) increased after application of 100 mg/L of ChL. In turn, in lemon balm both ChL concentrations increased the accumulation of RA and anthocyanins, while the level of total phenolic compounds (TPC) was elevated only at the dose of 100 mg/L of ChL. Elicitation of basil with 500 mg/L of ChL increased the shoot biomass. Therefore, such an elicitor as ChL can enhance the accumulation of valuable phytochemicals in Lamiaceae species. This simple and non-laborious method can be used for elicitation of herbal plants in production of functional food.
Asunto(s)
Lactatos/farmacología , Melissa/efectos de los fármacos , Melissa/metabolismo , Ocimum basilicum/efectos de los fármacos , Ocimum basilicum/metabolismo , Fitoquímicos/metabolismo , Relación Dosis-Respuesta a DrogaRESUMEN
Nickel is an essential plant micronutrient; however, even at low concentrations, it may be phytotoxic. Selenium is a beneficial element with an alleviating effect that has been confirmed in the case of many abiotic stresses, including metal toxicity. The aim of this study is to assess the effect of two forms of Se (Se(IV) or Se(VI)) on the phytotoxicity, accumulation, and translocation of Ni in lettuce. Nickel causes a reduction in lettuce growth and vitality of roots, probably through increased lipid peroxidation. The application of Se(IV) to a Ni-contaminated medium resulted in a further reduction of growth, especially in the presence of 6 µM Se(IV). The growth-promoting effect of Se was found only in the 2 µM Se(VI)/10 µM Ni treatment. The application of 6 µM Se, regardless of the Se form, to the Ni-containing substrate caused an increase in shoot Ni concentration. In turn, a decrease in root Ni content was found for all Se treatments. The strong aggravation of Ni phytotoxicity in the presence of 6 µM Se(IV) was most likely related to the accumulation of high Se concentration in the roots, and the combination of high root Ni accumulation caused irreversible dysregulation of cell metabolism.
RESUMEN
Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic activities affect the content of Se in the environment. Although plants are the core source of Se in animal and human diet, the role of Se in plants is still debatable. A low concentration of Se can be beneficial for plant growth, development, and ecophysiology both under optimum and unfavorable environmental conditions. However, excess Se results in toxic effects, especially in Se sensitive plants, due to changing structure and function of proteins and induce oxidative/nitrosative stress, which disrupts several metabolic processes. Contrary, Se hyperaccumulators absorb and tolerate exceedingly large amounts of Se, could be potentially used to remediate, i.e., remove, transfer, stabilize, and/or detoxify Se-contaminants in the soil and groundwater. Thereby, Se-hyperaccumulators can play a dynamic role in overcoming global problem Se-inadequacy and toxicity. However, the knowledge of Se uptake and metabolism is essential for the effective phytoremediation to remove this element. Moreover, selecting the most efficient species accumulating Se is crucial for successful phytoremediation of a particular Se-contaminated area. This review emphasizes Se toxicity in plants and the environment with regards to Se biogeochemistry and phytoremediation aspects. This review follows a critical approach and stimulates thought for future research avenues.
RESUMEN
The genus Rubus is one of the largest taxonomically diverse and complex genera in the family Rosaceae. Morphology of pollen grains (equatorial and polar axes length, shape and size, aperture position, exine sculpture, perforations) is regarded as one of its main diagnostic features for identification of species and varieties. An attempt was made to fill the gap concerning the pollen micromorphology and ultrastructure of R. idaeus L. using light, scanning, and electron transmission microscopy. This study is a comparative analysis of micromorphological and ultrastructural traits of pollen from six raspberry cultivars. The pollen grains were classified as small or medium of shape prolato-spheroids. The parallel striae in the equatorial view in the exine sculpture were sometimes branched dichotomously in 'Glen Ample', 'Polka', and 'Polana', arcuate in 'Laszka' and 'Pokusa', or irregularly overlapping in 'Radziejowa'. The width of exine striae of biennial fruiting cultivars was much larger than in repeated fruiting cultivars. In terms of the increasing number of perforations per unit area of the exine surface, the cultivars were ranked as follows: 'Pokusa' < 'Glen Ample' < 'Laszka' < 'Polka' < 'Polana' < 'Radziejowa'. The thickest tectum, the highest and thickest columellae with the largest distances between them, and the thicker foot layer were demonstrated in 'Glen Ample'. The ectoexine constituted on average ca. 78-90% of the exine thickness. The findings may constitute auxiliary traits i.a. for identification of related taxa, interpretation of phylogenetic relationships, and pollination biology.
RESUMEN
Herbal therapy is a potential alternative applied to pharmacological alleviation of depression symptoms and treatment of this disorder, which is predicted by the World Health Organization (WHO) to be the most serious health problem worldwide over the next several years. It has been well documented that many herbs with psychotropic effects have far fewer side effects than a variety of pharmaceutical agents used by psychiatrists for the treatment of depression. This systematic review presents literature data on the antidepressant activity of representatives of the genera Hemerocallis (H. fulva and H. citrina Baroni, family Xanthorrhoeaceae) and Gladiolus (G. dalenii, family Iridaceae) and on biologically active compounds and their mechanisms of action to consider the application of herbal preparations supporting the treatment of depression.
RESUMEN
An efficient method of improving the micronutrient status of Ni-treated white mustard (Sinapis alba L.) using intensive S-SO4 nutrition was developed. Twelve variants of Hoagland's nutrient solution differing in the concentration of S-SO4 (standard: 2 mM S, and elevated level: 6 or 9 mM S) and Ni (0, 0.0004, 0.04, or 0.08 mM Ni) were tested. The beneficial effect of intensive S nutrition on Ni-stressed plants was manifested by a significant rise in the content of Fe, Mn, and Zn, especially in the shoots. An increase was also found in the shoot B, Cu, and Mo content, whilst there were no changes in their root concentrations. Simultaneously, the shoot Cl concentrations dropped. The elevated level of S in the nutrient solution in general enhanced the translocation of Fe, Cu, Mo, and B in Ni-exposed plants. The beneficial effect of intensive S nutrition on the growth and micronutrient balance of Ni-exposed plants can be at least partially related to the positive changes in root surface properties, especially in cation exchange capacity (CEC). Meanwhile both reduced glutathione (GSH) and phytochelatins (PCs) probably do not significantly contribute to Ni resistance of white mustard under intensive S nutrition.
RESUMEN
There is very scanty information concerning the floral nectary structure and nectar secretion in Prunus laurocerasus L. Therefore, the aim of the study was to determine the micromorphology, anatomy and ultrastructure of nectaries; the abundance of nectar production; and the quantitative and qualitative composition of sugars contained in the nectar of two P. laurocerasus cultivars: 'Schipkaensis' and 'Zabeliana'. The nectary structure was studied using light, fluorescence, scanning and transmission electron microscopy techniques. The nectar sugars were analysed with HPLC. The 'Schipkaensis' had longer inflorescences with a larger number of flowers and a longer perianth than 'Zabeliana'. The micromorphological structure of the nectaries in 'Schipkaensis' exhibited denser (approx. 39%) and larger (approx. 50%) stomata and thicker (approx. 13%) cuticular striae forming wider bands (approx. 26%) than in 'Zabeliana'. The results provide new data on the micromorphology, anatomy and ultrastructure of these floral nectaries. Nectary cuticle ornamentation as well as the size, type and density of stomata and stomatal complex topography can have a diagnostic value in Prunus. The nectar sugar weight indicates a significant apicultural value of the cherry laurel, especially in the case of 'Schipkaensis'. Cherry laurel is an entomophilous species recommended for cultivation in nectariferous zones and insect pollinator refuges; however, climatic conditions eliminating the invasiveness of these plants should be considered.
Asunto(s)
Flores/química , Microscopía Electrónica de Rastreo/métodos , Néctar de las Plantas/químicaRESUMEN
The effect of S nutrition level (standard-2 and intensive-6 or 9 mmol S L-1) on the growth, micronutrient status, and Cd concentration of Cd-exposed (0, 0.0002, 0.02, and 0.04 mmol Cd L-1) Triticum aestivum L. 'Zebra' was examined. The hypothesis that Cd-induced micronutrient imbalance in this species is alleviated by enhanced S-sulfate (S-SO4) nutrition was tested. The intensive S nutrition, especially the dose of 6 mmol L-1, to some extent alleviated Cd-induced stress by improving the adverse changes in micronutrient status and increase of the biomass. The root and shoot Fe, Cu, Mn, and Zn concentrations of Cd-exposed wheat rose at 6 and remained unaltered at 9 mmol S L-1. Particularly noteworthy is the substantial increase of Fe bioconcentration found in Cd-stressed plants at 6 mmol S L-1. The root Cu concentration increased at 6 and decreased at 9 mmol S L-1, but did not change in shoots. Simultaneously, both the high S levels elevated the shoot Cl concentration but had no effect on the root Cl concentration. There were no substantial changes in the Mo concentration. The intensive S nutrition of the Cd-treated wheat did not affect the translocation factor (TF) of Fe and B. In turn, root-to-shoot translocation of Mo and Zn was enhanced at 6 and remained unchanged at 9 mmol S L-1. The changes in TF of Cl, Cu, and Mn varied greatly, depending on the S and Cd concentrations. Intensive S nutrition of Cd-stressed wheat, as a rule, dropped the root and increased the shoot Cd concentration as well as reduced Cd bioconcentration/bioaccumulation factor enhancing root-to-shoot Cd translocation.
RESUMEN
We examined the possibility to enhance the growth and the physiological tolerance of lamb's lettuce (Valerianella locusta L.) grown under heat stress (HS) by biofortification with selenium (Se). The plants were grown at optimal (22/19⯰C; day/night) or high (35/22⯰C; day/night) temperature and Se was applied via foliar or soil treatment. The HS reduced plant biomass and photosynthetic pigment concentration and impaired some parameters of chlorophyll a fluorescence. The lamb's lettuce grown under HS accumulated large amounts of H2O2 in the leaves, especially in younger ones. The Se fertilization (both foliar and soil) at HS was beneficial to plant growth, whilst the concentration of photosynthetic pigments and the analysed parameters of chlorophyll a fluorescence were unaffected by the Se supply. The application of Se enhanced the thermo-tolerance of plants through cooperative action of antioxidant enzymes, such as guaiacol peroxidase (GPOX; EC 1.11.1.7) and catalase (CAT; EC 1.11.1.6), and reduced glutathione (GSH) among low-molecular-weight non-enzymatic antioxidants, in removal of excess of H2O2. Although under HS the content of different phenolic compounds in the leaves was higher than under normal temperature (NT), the application of Se did not affect their concentration at stress conditions. On the other hand, at NT the Se-biofortified plants accumulated significantly more phenolic compounds with health-promoting properties than Se-untreated plants. Therefore, biofortification of lamb's lettuce with Se can be beneficial in terms of plants yield and their nutritional value under both NT and HS.