RESUMEN
Infants born very preterm (below 28â¯weeks of gestation) are at high risk of developing neurodevelopmental disorders, such as intellectual deficiency, autism spectrum disorders, and attention deficit. Preterm birth often occurs in the context of perinatal systemic inflammation due to chorioamnionitis and postnatal sepsis. In addition, C-section is often performed for very preterm neonates to avoid hypoxia during a vaginal delivery. We have developed and characterized a mouse model based on intraperitoneal injections of IL-1ß between postnatal days one and five to reproduce perinatal systemic inflammation. This model replicates several neuropathological, brain imaging, and behavioral deficits observed in preterm infants. We hypothesized that C-sections could synergize with systemic inflammation to induce more severe brain abnormalities. We observed that C-sections significantly exacerbated the deleterious effects of IL-1ß on reduced gut microbial diversity, increased levels of circulating peptidoglycans, abnormal microglia/macrophage reactivity, impaired myelination, and reduced functional connectivity in the brain relative to vaginal delivery plus intraperitoneal saline. These data demonstrate the deleterious synergistic effects of C-section and neonatal systemic inflammation on brain maldevelopment and malfunction, two conditions frequently observed in very preterm infants, who are at high risk of developing neurodevelopmental disorders.
RESUMEN
BACKGROUND: It has been stated that patients with congenital central hypoventilation syndrome (CCHS) do not perceive dyspnea, which could be related to defective CO2 chemosensitivity. METHODS: We retrospectively selected the data of six-minute walk tests (6-MWT, n = 30), cardiopulmonary exercise test (CPET, n = 5) of 30 subjects with CCHS (median age, 9.3 years, 17 females) who had both peripheral (controller loop gain, CG0) and central CO2 chemosensitivity (hyperoxic, hypercapnic response test [HHRT]) measurement. MAIN RESULTS: Ten subjects had no symptom during the HHRT, as compared to the 20 subjects exhibiting symptoms, their median ages were 14.7 versus 8.8 years (p = 0.006), their maximal PETCO2 were 71.6 versus 66.7 mmHg (p = 0.007), their median CO2 response slopes were 0.28 versus 0.30 L/min/mmHg (p = 0.533) and their CG0 values were 0.75 versus 0.50 L/min/mmHg (p = 0.567). Median dyspnea Borg score at the end of the 6-MWT was 1/10 (17/30 subjects >0), while at the end of the CPET it was 3/10 (sensation: effort). This Borg score positively correlated with arterial desaturation at walk (R = 0.43; p = 0.016) and did not independently correlate with CO2 chemosensitivities. CONCLUSION: About half of young subjects with CCHS do exhibit mild dyspnea at walk, which is not related to hypercapnia or residual CO2 chemosensitivity. IMPACT: Young subjects with CCHS exhibit some degree of dyspnea under CO2 exposure and on exercise that is not related to residual CO2 chemosensitivity. It has been stated that patients with CCHS do not perceive sensations of dyspnea, which must be tempered. The mild degree of exertional dyspnea can serve as an indicator for the necessity of breaks.
RESUMEN
Sleep trackers are used widely by patients with sleep complaints, however their metrological validation is often poor and relies on healthy subjects. We assessed the metrological validity of two commercially available sleep trackers (Withings Activité/Fitbit Alta HR) through a prospective observational monocentric study, in adult patients referred for polysomnography (PSG). We compared the total sleep time (TST), REM time, REM latency, nonREM1 + 2 time, nonREM3 time, and wake after sleep onset (WASO). We report absolute and relative errors, Bland-Altman representations, and a contingency table of times spent in sleep stages with respect to PSG. Sixty-five patients were included (final sample size 58 for Withings and 52 for Fitbit). Both devices gave a relatively accurate sleep start time with a median absolute error of 5 (IQR -43; 27) min for Withings and -2.0 (-12.5; 4.2) min for Fitbit but both overestimated TST. Withings tended to underestimate WASO with a median absolute error of -25.0 (-61.5; -8.5) min, while Fitbit tended to overestimate it (median absolute error 10 (-18; 43) min. Withings underestimated light sleep and overestimated deep sleep, while Fitbit overestimated light and REM sleep and underestimated deep sleep. The overall kappas for concordance of each epoch between PSG and devices were low: 0.12 (95%CI 0.117-0.121) for Withings and VPSG indications 0.07 (95%CI 0.067-0.071) for Fitbit, as well as kappas for each VPSG indication 0.07 (95%CI 0.067-0.071). Thus, commercially available sleep trackers are not reliable for sleep architecture in patients with sleep complaints/pathologies and should not replace actigraphy and/or PSG.
RESUMEN
Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.
Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Down , Neurogénesis , Animales , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/patología , Síndrome de Down/metabolismo , Síndrome de Down/complicaciones , Síndrome de Down/genética , Neurogénesis/efectos de los fármacos , Ratones , Femenino , Embarazo , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/efectos de los fármacos , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Quinasas DyrK , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Masculino , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/patologíaRESUMEN
Background: Whether dysfunctional breathing (DB) subtype classification is useful remains undetermined. The hyperventilation provocation test (HVPT) is used to diagnose DB. This test begins with a 3-min phase of hyperventilation during which fractional end-tidal CO2 (FETCO2) decreases that could be an assessment of plant gain, which relies on CO2 stores. Our aim was to assess 1) whether the children suffering from different subtypes of DB exhibit decreased plant gain and 2) the relationships between HVPT characteristics and plant gain. Methods: We retrospectively selected 48 children (median age 13.5 years, 36 females, 12 males) who exhibited during a cardiopulmonary exercise test either alveolar hyperventilation (transcutaneous PCO2 < 30 mmHg, n = 6) or inappropriate hyperventilation (increased VE'/V'CO2 slope) without hypocapnia (n = 18) or dyspnea without hyperventilation (n = 18) compared to children exhibiting physiological breathlessness (dyspnea for sports only, n = 6). These children underwent tidal-breathing recording (ventilation and FETCO2 allowing the calculation of plant gain) and a HVPT. Results: The plant gain was significantly higher in the physiological group as compared to the dyspnea without hyperventilation group, p = 0.024 and hyperventilation without hypocapnia group, p = 0.008 (trend for the hyperventilation with hypocapnia group, p = 0.078). The slope of linear decrease in FETCO2 during hyperventilation was significantly more negative in physiological breathlessness group as compared to hyperventilation without hypocapnia group (p = 0.005) and dyspnea without hyperventilation group (p = 0.049). Conclusion: The children with DB, regardless of their subtype, deplete their CO2 stores (decreased plant gain), which may be due to intermittent alveolar hyperventilation, suggesting the futility of our subtype classification.
RESUMEN
Whether peripheral chemoreceptor response is altered in congenital central hypoventilation syndrome (CCHS) remains debated. Our aim was to prospectively evaluate both peripheral and central CO2 chemosensitivity and to evaluate their correlations with daytime Pco2 and arterial desaturation during exercise in CCHS. To this end, tidal breathing was recorded in patients with CCHS allowing the calculation of loop gain and its components {steady-state controller (assumed to mainly be peripheral chemosensitivity) and plant gains using a bivariate [end-tidal Pco2 ([Formula: see text]) and ventilation] constrained model}, a hyperoxic, hypercapnic ventilatory response test (central chemosensitivity), and a 6-min walk test (arterial desaturation). The results of loop gain were compared with those previously obtained in a healthy group of similar age. The study prospectively included 23 subjects with CCHS, without daytime ventilatory support; the subjects had a median age of 10 (5.6 to 27.4) yr (15 females) with moderate polyalanine repeat mutation (PARM: 20/25, 20/26, n = 11), severe PARM (20/27, 20/33, n = 8), or non-PARM (n = 4). As compared with 23 healthy subjects (4.9-27.0 yr), the subjects with CCHS had a decreased controller gain and an increased plant gain. Mean daytime [Formula: see text] level of subjects with CCHS correlated negatively to both Log(controller gain) and the slope of CO2 response. Genotype was not related to chemosensitivity. Arterial desaturation on exercise correlated negatively with Log(controller) gain but not with the slope of the CO2 response. In conclusion, we demonstrate that peripheral CO2 chemosensitivity is altered in some patients with CCHS and that the daytime [Formula: see text] depends on central and peripheral chemoreceptor responses.NEW & NOTEWORTHY Altered central CO2 chemosensitivity is a hallmark of congenital central hypoventilation syndrome (CCHS). Peripheral CO2 chemosensitivity can be partly assessed by controller gain measurement obtained from tidal breathing recording. In young subjects with CCHS, this study shows that both central and peripheral CO2 sensitivities independently contribute to daytime Pco2. Hypocapnia during nighttime-assisted ventilation is associated with higher peripheral chemosensitivity that is further associated with lesser arterial desaturation at walk.
Asunto(s)
Dióxido de Carbono , Apnea Central del Sueño , Femenino , Humanos , Hipoventilación/congénito , Hipoventilación/genética , RespiraciónRESUMEN
OBJECTIVES: Autonomic nervous system (ANS) dysfunction characterizes congenital central hypoventilation syndrome (CCHS). The objectives were to describe ambulatory blood pressure monitoring (ABPM) of children with CCHS, to assess cardiac ANS dysfunction as compared with control participants and to search for relationships between ANS dysfunction and blood pressure (BP) or night-time PCO 2 measurements. METHODS: Retrospective study of ABPM of children with CCHS and case (CCHS)-control (healthy children) study of heart rate variability (HRV) indices obtained during polysomnography (wakefulness, nonrapid eye movement sleep, rapid eye movement sleep, and whole night). The HRV indices analyzed were low, high-frequency powers, low frequency/high frequency, and for the whole night, SD1/SD2. RESULTS: Twenty-four children with CCHS (14 girls) who underwent 81 ABPM (2-6/patient, 74 after 4 years) were included in the longitudinal study. Hypertension was evidenced in 29 of 45 (64%) ABPM made between 5 and 9 years of age as compared with 12 of 36 (33%) ABPM made between 10 and 17 years of age ( P â=â0.005). In the case-control study (12 pairs), as compared with control children, children with CCHS were characterized by a decreased HRV while awake, which was aggravated at night. In children with CCHS, at daytime, SBP percentiles positively correlated with low-frequency power ( R â=â-0.82; P â=â0.001), while at night-time, SBP percentiles negatively correlated with SD1/SD2 ( R â=â-0.79; P â=â0.010). The SD1/SD2 ratio also negatively correlated with median PCO 2 under mechanical ventilation ( R â=â-0.69; P â=â0.013). CONCLUSION: Neurogenic hypertension is frequent in CCHS and correlates with ANS dysfunction, which also correlates with alveolar ventilation during mechanical ventilation.
Asunto(s)
Hipertensión , Hipoventilación , Niño , Femenino , Humanos , Monitoreo Ambulatorio de la Presión Arterial , Estudios de Casos y Controles , Hipertensión/complicaciones , Hipoventilación/congénito , Estudios Longitudinales , Estudios Retrospectivos , Sueño/fisiología , Masculino , Preescolar , AdolescenteRESUMEN
Introduction: Congenital Central Hypoventilation Syndrome, a rare disease caused by PHOX2B mutation, is associated with absent or blunted CO2/H+ chemosensitivity due to the dysfunction of PHOX2B neurons of the retrotrapezoid nucleus. No pharmacological treatment is available. Clinical observations have reported non-systematic CO2/H+ chemosensitivity recovery under desogestrel. Methods: Here, we used a preclinical model of Congenital Central Hypoventilation Syndrome, the retrotrapezoid nucleus conditional Phox2b mutant mouse, to investigate whether etonogestrel, the active metabolite of desogestrel, led to a restoration of chemosensitivity by acting on serotonin neurons known to be sensitive to etonogestrel, or retrotrapezoid nucleus PHOX2B residual cells that persist despite the mutation. The influence of etonogestrel on respiratory variables under hypercapnia was investigated using whole-body plethysmographic recording. The effect of etonogestrel, alone or combined with serotonin drugs, on the respiratory rhythm of medullary-spinal cord preparations from Phox2b mutants and wildtype mice was analyzed under metabolic acidosis. c-FOS, serotonin and PHOX2B were immunodetected. Serotonin metabolic pathways were characterized in the medulla oblongata by ultra-high-performance liquid chromatography. Results: We observed etonogestrel restored chemosensitivity in Phox2b mutants in a non-systematic way. Histological differences between Phox2b mutants with restored chemosensitivity and Phox2b mutant without restored chemosensitivity indicated greater activation of serotonin neurons of the raphe obscurus nucleus but no effect on retrotrapezoid nucleus PHOX2B residual cells. Finally, the increase in serotonergic signaling by the fluoxetine application modulated the respiratory effect of etonogestrel differently between Phox2b mutant mice and their WT littermates or WT OF1 mice, a result which parallels with differences in the functional state of serotonergic metabolic pathways between these different mice. Discussion: Our work thus highlights that serotonin systems were critically important for the occurrence of an etonogestrel-restoration, an element to consider in potential therapeutic intervention in Congenital Central Hypoventilation Syndrome patients.
Asunto(s)
Desogestrel , Progestinas , Animales , Ratones , Desogestrel/farmacología , Desogestrel/uso terapéutico , Progestinas/farmacología , Serotonina , Gonanos , Dióxido de Carbono , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Congéneres de la ProgesteronaRESUMEN
BACKGROUND: Autonomic nervous system (ANS) dysregulation has been described in congenital central hypoventilation syndrome (CCHS). The objectives were to describe heart rate variability (HRV) analyses in children suffering from CCHS both while awake and asleep and their relationships with both ambulatory blood pressure (BP) and ECG monitoring results. METHODS: This retrospective study enrolled children with CCHS (n = 33, median age 8.4 years, 18 girls) who had BP and ECG monitored during the same 24 h. From the latter, HRV analyses were obtained during daytime and nighttime. RESULTS: The prevalences of hypertension and sinus pauses were 33% (95% confidence interval [CI]: 18-52) and 18% (95% CI: 7-35), respectively. The decrease in systolic BP at night negatively correlated with an increase in very low frequency (VLF) and LF powers at night, and the longest RR interval positively correlated with daytime VLF and LF powers. Among the three groups of children (polyalanine repeat expansion mutation [PARM], moderate [20/25 and 20/26], severe [20/27 and 20/33], and non-PARMs), the prevalence of elevated BP or hypertension was different: in PARM subjects: 6/18 moderate, 7/9 severe versus 0/6 in non-PARM (p = 0.002). CONCLUSION: Modifications of cardiac ANS are associated with systemic hypertension and the occurrence of sinus pauses in CCHS. IMPACT: Children with congenital central hypoventilation syndrome (CCHS) exhibit an increased prevalence of hypertension and sinus pauses that are linked to cardiac autonomic nervous system dysfunction. Sinus pauses are the main manifestation of sinus nodal dysfunction in children with CCHS. The increased prevalence of hypertension, especially at nighttime, is a new finding in CCHS. Sinus nodal dysfunction can be due to the sole impairment of the cardiac autonomic nervous system. Ambulatory blood pressure and ECG monitoring are mandatory in patients with CCHS.
Asunto(s)
Hipertensión , Apnea Central del Sueño , Niño , Femenino , Humanos , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Frecuencia Cardíaca , Estudios Retrospectivos , Monitoreo Ambulatorio de la Presión Arterial , Apnea Central del Sueño/diagnóstico , Apnea Central del Sueño/epidemiología , Hipertensión/epidemiologíaRESUMEN
Instable ventilatory control is an endotypic trait of obstructive sleep apnea syndrome (OSAS). This study aimed to evaluate the relationships between the anatomical compromise of the upper (oro- and naso-pharynx) and lower airways and ventilatory control (measured by chemical loop gain) in otherwise healthy children suffering from moderate to severe OSAS (apnea hypopnea index ≥ 5/hour). The children underwent ear, nose and throat examination, measurement of impedance of the respiratory system that allowed characterizing peripheral lung mechanics using the extended Resistance-Inertance-Compliance model. Physiologically constrained analytical model based on tidal breathing analysis allowed for the computation of steady-state plant gain, steady-state controller gain (CG0) and steady-state loop gain (LG0). Medium-frequency components of the feedback control system were then deduced. Fifty children (median age 11.2 years) were enrolled. Oropharyngeal obstruction was associated with decreased CG0 (0.6 [0.2; 1.0] vs 1.5 [0.5; 6.6] L.s- 1.mmHg- 1, p = 0.038) and LG0 (0.4 [0.2; 1.1] vs 1.2 [0.4; 9.3], p = 0.027), while nasal obstruction did not modify ventilatory control parameters. In a multivariate analysis Medium-Frequency PG was negatively related to minute ventilation and respiratory system compliance. Both upper (tonsil hypertrophy) and lower (compliance of respiratory system) airways are linked to ventilatory control in children with moderate to severe OSAS.
Asunto(s)
Tonsila Faríngea , Apnea Obstructiva del Sueño , Niño , Humanos , Tonsila Palatina , Faringe , Pruebas de Función RespiratoriaRESUMEN
Rationale: Congenital central hypoventilation syndrome (CCHS) is characterized by life-threatening sleep hypoventilation and is caused by PHOX2B gene mutations, most frequently the PHOX2B27Ala/+ mutation, with patients requiring lifelong ventilatory support. It is unclear whether obstructive apneas are part of the syndrome. Objectives: To determine if Phox2b27Ala/+ mice, which present the main symptoms of CCHS and die within hours after birth, also express obstructive apneas, and to investigate potential underlying mechanisms. Methods: Apneas were classified as central, obstructive, or mixed by using a novel system combining pneumotachography and laser detection of abdominal movement immediately after birth. Several respiratory nuclei involved in airway patency were examined by immunohistochemistry and electrophysiology in brainstem-spinal cord preparations. Measurements and Main Results: The median (interquartile range) of obstructive apnea frequency was 2.3 (1.5-3.3)/min in Phox2b27Ala/+ pups versus 0.6 (0.4-1.0)/min in wild types (P < 0.0001). Obstructive apnea duration was 2.7 seconds (2.3-3.9) in Phox2b27Ala/+ pups versus 1.7 seconds (1.1-1.9) in wild types (P < 0.0001). Central and mixed apneas presented similar significant differences. In Phox2b27Ala/+ preparations, the hypoglossal nucleus had fewer (P < 0.05) and smaller (P < 0.01) neurons, compared with wild-type preparations. Importantly, coordination of phrenic and hypoglossal motor activities was disrupted, as evidenced by the longer and variable delay of hypoglossal activity with respect to phrenic activity onset (P < 0.001). Conclusions: The Phox2b27Ala/+ mutation predisposed pups not only to hypoventilation and central apneas, but also to obstructive and mixed apneas, likely because of hypoglossal dysgenesis. These results thus demand attention toward obstructive events in infants with CCHS.
Asunto(s)
Hipoventilación/congénito , Hipoventilación/diagnóstico , Hipoventilación/genética , Hipoventilación/fisiopatología , Apnea Central del Sueño/congénito , Apnea Central del Sueño/diagnóstico , Apnea Central del Sueño/genética , Apnea Central del Sueño/fisiopatología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Humanos , Ratones , Mutación , Factores de Transcripción/genéticaRESUMEN
Intrauterine growth restriction (IUGR) increases the risk of bronchopulmonary dysplasia (BPD), one of the major complications of prematurity. Antenatal low-protein diet (LPD) exposure in rats induces IUGR and mimics BPD-related alveolarization disorders. Peroxisome proliferator-activated receptor-γ (PPARγ) plays a key role in normal lung development and was found deregulated following LPD exposure. The objective of this article was to investigate the effects of nebulized curcumin, a natural PPARγ agonist, to prevent IUGR-related abnormal lung development. We studied rat pups antenatally exposed to an LPD or control diet (CTL) and treated with nebulized curcumin (50 mg/kg) or vehicle from postnatal (P) days 1 to 5. The primary readouts were lung morphometric analyses at P21. Immunohistochemistry (P21) and microarrays (P6 and P11) were compared within animals exposed to LPD versus controls, with and without curcumin treatment. Quantitative morphometric analyses revealed that LPD induced abnormal alveolarization as evidenced by a significant increase in mean linear intercept (MLI) observed in P21 LPD-exposed animals. Early curcumin treatment prevented this effect, and two-way ANOVA analysis demonstrated significant interaction between diet and curcumin both for MLI [F(1,39) = 12.67, P = 0.001] and radial alveolar count at P21 [F(1,40) = 6.065, P = 0.0182]. Immunohistochemistry for fatty acid binding protein 4 (FABP4), a major regulator of PPARγ pathway, showed a decreased FABP4+ alveolar cell density in LPD-exposed animals treated by curcumin. Transcriptomic analysis showed that early curcumin significantly prevented the activation of profibrotic pathways observed at P11 in LPD-exposed animals. Nebulized curcumin appears to be a promising strategy to prevent alveolarization disorders in IUGR rat pups, targeting pathways involved in lung development.
Asunto(s)
Displasia Broncopulmonar/prevención & control , Curcumina/farmacología , Dieta con Restricción de Proteínas/efectos adversos , Alveolos Pulmonares/metabolismo , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Masculino , Nebulizadores y Vaporizadores , PPAR gamma/agonistas , PPAR gamma/metabolismo , Alveolos Pulmonares/patología , Ratas , Ratas Sprague-DawleyRESUMEN
A combination of noradrenergic and antimuscarinic agents reduces the apnea-hypopnea index (AHI) in adult patients with obstructive sleep apnoea (OSA) via reduced upper airway collapsibility, suggesting that a shift in the sympathovagal balance improves OSA. The objectives of our present case-control study were to assess heart rate variability (HRV) indices in the stages of sleep in children with and without OSA to evaluate OSA-induced sleep HRV modifications and to assess whether increased collapsibility measured during wakefulness is associated with reduced sympathetic activity during non-rapid eye movement (NREM) sleep. Three groups of 15 children were matched by sex, age, z-score of body mass index and ethnicity: non-OSA (obstructive AHI [OAHI] <2 events/hr), mild (OAHI ≥2 to <5 events/hr) or moderate-severe (OAHI ≥5 events/hr) OSA. Pharyngeal compliance was measured during wakefulness using acoustic pharyngometry. HRV indices (time and frequency domain variables) were calculated on 5-min electrocardiography recordings from polysomnography during wakefulness, NREM and REM sleep in periods free of any event. As compared to children without OSA, those with OSA (n = 30) were characterised by increased compliance and no physiological parasympathetic tone increase in REM sleep. Children with increased pharyngeal compliance (n = 21) had a higher OAHI due to higher AHI in NREM sleep, whereas their sympathetic tone was lower than that of those with normal compliance (n = 24). In conclusion, children with increased pharyngeal compliance exhibit decreased sympathetic tone associated with increased AHI in NREM sleep. Therapeutics directed at sympathovagal balance modifications should be tested in childhood OSA.
Asunto(s)
Apnea Obstructiva del Sueño , Estudios de Casos y Controles , Estudios Transversales , Frecuencia Cardíaca , Humanos , PolisomnografíaRESUMEN
STUDY OBJECTIVES: We aimed to assess ventilatory control in typically developing children with and without obstructive sleep apnea (OSA). METHODS: Otherwise healthy children referred for suspicion of OSA were recruited. In addition to polysomnography, we analyzed loop, controller and plant gains (ie, LG, CG, and PG), which reflect the stability of control, chemoreceptor sensitivity and the pulmonary control of blood gases in response to changes in ventilation, respectively, from tidal breathing recordings during wakefulness. Two bivariate (ventilation, end-tidal CO2: one unconstrained and one constrained) and one trivariate (plus end-tidal oxygen) unconstrained model were used to assess model consistency and oxygen chemosensitivity. RESULTS: In sum, 54 children (median age 11.6 years) were included. Children with OSA (n = 19, [obstructive apnea-hypopnea index] OAHI ≥2.h-1) had a higher plant gain compared with those without OSA (n = 35), and it was positively correlated with apnea hypopnea index (AHI) (r2 = 0.10, p < 0.020). The two models showed consistent results. The bivariate constrained model showed that children with OAHI ≥5.h-1 showed an increased steady-state plant gain compared with children with OAHI <5.h-1. The trivariate model did not show evidence of any abnormality of oxygen chemosensitivity. CONCLUSION: Plant gain may contribute to OSA pathophysiology in children, and therapies directed at its reduction should be tested.
Asunto(s)
Análisis de los Gases de la Sangre , Respiración , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/fisiopatología , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Oxígeno , PolisomnografíaRESUMEN
BACKGROUND: Optimal management of anesthesia-induced respiratory depression requires identification of the neural pathways that are most effective in maintaining breathing during anesthesia. Lesion studies point to the brainstem retrotrapezoid nucleus. We therefore examined the respiratory effects of common anesthetic/analgesic agents in mice with selective genetic loss of retrotrapezoid nucleus neurons (Phox2b mice, hereafter designated "mutants"). METHODS: All mice received intraperitoneal ketamine doses ranging from 100 mg/kg at postnatal day (P) 8 to 250 mg/kg at P60 to P62. Anesthesia effects in P8 and P14 to P16 mice were then analyzed by administering propofol (100 and 150 mg/kg at P8 and P14 to P16, respectively) and fentanyl at an anesthetic dose (1 mg/kg at P8 and P14 to P16). RESULTS: Most mutant mice died of respiratory arrest within 13 min of ketamine injection at P8 (12 of 13, 92% vs. 0 of 8, 0% wild type; Fisher exact test, P < 0.001) and P14 to P16 (32 of 42, 76% vs. 0 of 59, 0% wild type; P < 0.001). Cardiac activity continued after terminal apnea, and mortality was prevented by mechanical ventilation, supporting respiratory arrest as the cause of death in the mutants. Ketamine-induced mortality in mutants compared to wild types was confirmed at P29 to P31 (24 of 36, 67% vs. 9 of 45, 20%; P < 0.001) and P60 to P62 (8 of 19, 42% vs. 0 of 12, 0%; P = 0.011). Anesthesia-induced mortality in mutants compared to wild types was also observed with propofol at P8 (7 of 7, 100% vs. 0 of 17,7/7, 100% vs. 0/17, 0%; P < 0.001) and P14 to P16 (8 of 10, 80% vs. 0 of 10, 0%; P < 0.001) and with fentanyl at P8 (15 of 16, 94% vs. 0 of 13, 0%; P < 0.001) and P14 to P16 (5 of 7, 71% vs. 0 of 11, 0%; P = 0.002). CONCLUSIONS: Ketamine, propofol, and fentanyl caused death by respiratory arrest in most mice with selective loss of retrotrapezoid nucleus neurons, in doses that were safe in their wild type littermates. The retrotrapezoid nucleus is critical to sustain breathing during deep anesthesia and may prove to be a pharmacologic target for this purpose.
Asunto(s)
Anestesia/efectos adversos , Anestésicos Disociativos/administración & dosificación , Proteínas de Homeodominio/genética , Mutación/genética , Respiración/efectos de los fármacos , Complejo Olivar Superior/efectos de los fármacos , Factores de Transcripción/genética , Animales , Femenino , Ketamina/administración & dosificación , Masculino , Ratones , Ratones Transgénicos , Complejo Olivar Superior/fisiologíaRESUMEN
Fifteen million babies are born preterm every year and a significant number suffer from permanent neurological injuries linked to white matter injury (WMI). A chief cause of preterm birth itself and predictor of the severity of WMI is exposure to maternal-fetal infection-inflammation such as chorioamnionitis. There are no neurotherapeutics for this WMI. To affect this healthcare need, the repurposing of drugs with efficacy in other white matter injury models is an attractive strategy. As such, we tested the efficacy of GSK247246, an H3R antagonist/inverse agonist, in a model of inflammation-mediated WMI of the preterm born infant recapitulating the main clinical hallmarks of human brain injury, which are oligodendrocyte maturation arrest, microglial reactivity, and hypomyelination. WMI is induced by mimicking the effects of maternal-fetal infection-inflammation and setting up neuroinflammation. We induce this process at the time in the mouse when brain development is equivalent to the human third trimester; postnatal day (P)1 through to P5 with i.p. interleukin-1ß (IL-1ß) injections. We initiated GSK247246 treatment (i.p at 7â¯mg/kg or 20â¯mg/kg) after neuroinflammation was well established (on P6) and it was administered twice daily through to P10. Outcomes were assessed at P10 and P30 with gene and protein analysis. A low dose of GSK247246 (7â¯mg/kg) lead to a recovery in protein expression of markers of myelin (density of Myelin Basic Protein, MBP & Proteolipid Proteins, PLP) and a reduction in macro- and microgliosis (density of ionising adaptor protein, IBA1 & glial fibrillary acid protein, GFAP). Our results confirm the neurotherapeutic efficacy of targeting the H3R for WMI seen in a cuprizone model of multiple sclerosis and a recently reported clinical trial in relapsing-remitting multiple sclerosis patients. Further work is needed to develop a slow release strategy for this agent and test its efficacy in large animal models of preterm infant WMI.
Asunto(s)
Antagonistas de los Receptores Histamínicos H3/farmacología , Sustancia Blanca/lesiones , Sustancia Blanca/patología , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encefalopatías/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/metabolismo , Ratones , Ratones Endogámicos , Microglía/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neurogénesis , Neuroinmunomodulación/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Oligodendroglía , Embarazo , Nacimiento Prematuro/tratamiento farmacológico , Receptores Histamínicos/metabolismo , Sustancia Blanca/metabolismoRESUMEN
The loop gain (LG) is defined as the ratio of a ventilatory response over the perturbation in ventilation, and it is used to analyze ventilatory control stability. The LG can be derived from minute ventilation (VÌe), end-tidal Pco2 ([Formula: see text]), and end-tidal Po2 ([Formula: see text]) values. Several methods of LG assessment have been developed, which have never been compared. We evaluated the computability, the short-term repeatability, and the agreement of six published (or slightly modified) models for LG determination. These models included three unconstrained autoregressive models, univariate (VÌe), bivariate (VÌe, [Formula: see text]), and trivariate (VÌe, [Formula: see text], and [Formula: see text]), and three analytical transfer function constrained models based on VÌe, VÌe and CO2-sensitivity, and VÌe and central and peripheral CO2 sensitivities, respectively. The models were tested with tidal breathing data in 37 awake healthy subjects (median age 35 yr; 23 women, 14 men). Modeling failed in 11, 0, and 0 subjects for the three unconstrained models, respectively, and 4, 1, and 9 subjects for the three constrained models, respectively. Bland and Altman analyses of the LG values in the medium frequency range of two separate recordings demonstrated good repeatability for four models, excluding univariate and trivariate unconstrained models. The four repeatable models gave LG values that were in agreement (medium frequency LG, median 0.100-0.210), although the constrained model based on VÌe systematically overestimated LG values. The variances explained by these models were â¼20%. In conclusion, model-based analyses of tidal breathing were performed with different approaches that gave comparable results for chemical LG and explained variance.NEW & NOTEWORTHY Several methods of chemical loop gain measurement have been published but never compared. We show that a better repeatability is obtained with analytical constrained models compared with autoregressive unconstrained models and that the repeatable models gave comparable results of loop gain, even if the calculation based on ventilation-only recording gave higher values than those obtained with both ventilation and end-tidal Pco2 recording. The explained variance of ventilation was similar whatever the model.
RESUMEN
Pituitary growth hormone (GH) and insulinlike growth factor (IGF)-1 are anabolic hormones whose physiological roles are particularly important during development. The activity of the GH/IGF-1 axis is controlled by complex neuroendocrine systems including two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF), and a gastrointestinal hormone, ghrelin. The neurotransmitter acetylcholine (ACh) is involved in tuning GH secretion, and its GH-stimulatory action has mainly been shown in adults but is not clearly documented during development. ACh, together with these hormones and their receptors, is expressed before birth, and somatotroph cells are already responsive to GHRH, SRIF, and ghrelin. We thus hypothesized that ACh could contribute to the modulation of the main components of the somatotropic axis during development. In this study, we generated a choline acetyltransferase knockout mouse line and showed that heterozygous mice display a transient deficit in ACh from embryonic day 18.5 to postnatal day 10, and they recover normal ACh levels from the second postnatal week. This developmental ACh deficiency had no major impact on weight gain and cardiorespiratory status of newborn mice. Using this mouse model, we found that endogenous ACh levels determined the concentrations of circulating GH and IGF-1 at embryonic and postnatal stages. In particular, serum GH level was correlated with brain ACh content. ACh also modulated the levels of GHRH and SRIF in the hypothalamus and ghrelin in the stomach, and it affected the levels of these hormones in the circulation. This study identifies ACh as a potential regulator of the somatotropic axis during the developmental period.
Asunto(s)
Acetilcolina/metabolismo , Colina O-Acetiltransferasa/metabolismo , Hormona del Crecimiento/sangre , Hipotálamo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hipófisis/metabolismo , Acetilcolina/sangre , Animales , Colina O-Acetiltransferasa/genética , Mucosa Gástrica/metabolismo , Ghrelina/metabolismo , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Heterocigoto , Ratones , Ratones Noqueados , Sistemas Neurosecretores/metabolismoRESUMEN
[This corrects the article on p. 313 in vol. 6, PMID: 26582992.].