Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 20(1): 67, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737197

RESUMEN

BACKGROUND: Pharmacological treatment of CNS diseases is limited due to the presence of the blood-brain barrier (BBB). Recent years showed significant advancement in the field of CNS drug delivery enablers, with technologies such as MR-guided focused ultrasound reaching clinical trials. This have inspired researchers in the field to invent novel brain barriers opening (BBo) technologies that are required to be simple, fast, safe and efficient. One such technology, recently developed by us, is BDF (Barrier Disrupting Fields), based on low pulsed electric fields (L-PEFs) for opening the BBB in a controlled, safe, reversible and non-invasive manner. Here, we conducted an in vivo study to show that BDF is a feasible technology for delivering Doxorubicin (Doxo) into mice brain. Means for depicting BBBo levels were developed and applied for monitoring the treatment and predicting response. Overall, the goals of the presented study were to demonstrate the feasibility for delivering therapeutic Doxo doses into naïve and tumor-bearing mice brains and applying delayed-contrast MRI (DCM) for monitoring the levels of BBBo. METHODS: L-PEFs were applied using plate electrodes placed on the intact skull of naïve mice. L-PEFs/Sham mice were scanned immediately after the procedure by DCM ("MRI experiment"), or injected with Doxo and Trypan blue followed by delayed (4 h) perfusion and brain extraction ("Doxo experiment"). Doxo concentrations were measured in brain samples using confocal microscopy and compared to IC50 of Doxo in glioma cell lines in vitro. In order to map BBBo extent throughout the brain, pixel by pixel MR image analysis was performed using the DCM data. Finally, the efficacy of L-PEFs in combination with Doxo was tested in nude mice bearing intracranial human glioma tumors. RESULTS: Significant amount of Doxo was found in cortical regions of all L-PEFs-treated mice brains (0.50 ± 0.06 µg Doxo/gr brain) while in Sham brains, Doxo concentrations were below or on the verge of detection limit (0.03 ± 0.02 µg Doxo/gr brain). This concentration was x97 higher than IC50 of Doxo calculated in gl261 mouse glioma cells and x8 higher than IC50 of Doxo calculated in U87 human glioma cells. DCM analysis revealed significant BBBo levels in the cortical regions of L-PEFs-treated mice; the average volume of BBBo in the L-PEFs-treated mice was x29 higher than in the Sham group. The calculated BBBo levels dropped exponentially as a function of BBBo threshold, similarly to the electric fields distribution in the brain. Finally, combining non-invasive L-PEFs with Doxo significantly decreased brain tumors growth rates in nude mice. CONCLUSIONS: Our results demonstrate significant BBBo levels induced by extra-cranial L-PEFs, enabling efficient delivery of therapeutic Doxo doses into the brain and reducing tumor growth. As BBBo was undetectable by standard contrast-enhanced MRI, DCM was applied to generate maps depicting the BBBo levels throughout the brain. These findings suggest that BDF is a promising technology for efficient drug delivery into the brain with important implications for future treatment of brain cancer and additional CNS diseases.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Animales , Ratones , Barrera Hematoencefálica , Ratones Desnudos , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/diagnóstico por imagen , Glioma/tratamiento farmacológico , Doxorrubicina/farmacología
2.
J Med Chem ; 61(24): 11309-11326, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30507195

RESUMEN

TLR4, a member of the Toll-like receptor (TLR) family, serves as a pattern recognition receptor in the innate immune response to microbial pathogens. TLR4 also regulates the inflammatory reaction to ischemic injury in the heart. The TRIF-related adaptor molecule (TRAM) is an adapter that recruits the Toll/interleukin 1 receptor (TIR) domain, which contains adapter-inducing IFN-ß (TRIF), to activate TLR4, following TRIF-dependent cytokine gene transcription. On the basis of a known TRAM-derived decoy peptide, 10 of its peptidomimetics were synthesized. One of them, 1-benzyl-5-methyl-4-( n-octylamino)pyrimidin-2(1 H)-one (21), exhibited high potency and efficacy in vitro. In vitro results and in silico analysis provided evidence for the possible direct interaction of 21 with the TLR4 complex. Administered in mice, 21 was able to block the pathophysiological manifestation of MI, restoring the concomitant tissue damage, with a 100% survival rate. Thus, inhibition of TLR4-mediated inflammation in postischemic myocardium could be used as an approach for developing cardioprotective drugs.


Asunto(s)
Cardiotónicos/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Peptidomiméticos/farmacología , Pirimidinas/farmacología , Receptor Toll-Like 4/metabolismo , Animales , Sitios de Unión , Cardiotónicos/química , Cardiotónicos/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Simulación por Computador , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Factores Reguladores del Interferón/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Peptidomiméticos/química , Pirimidinas/química , Pirimidinas/metabolismo , Ratas Sprague-Dawley , Receptor Toll-Like 4/química , Receptor Toll-Like 4/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...