Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Microbiol ; 26(2): 191-204, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36329310

RESUMEN

Submarine mud volcanoes (MVs) have attracted significant interest in the scientific community for obtaining clues on the subsurface biosphere. On-land MVs, which are much less focused in this context, are equally important, and they may even provide insights also for astrobiology of extraterrestrial mud volcanism. Hereby, we characterized microbial communities of two active methane-seeping on-land MVs, Murono and Kamou, in central Japan. 16S rRNA gene profiling of those sites recovered the dominant archaeal sequences affiliated with methanogens. Anaerobic methanotrophs (ANME), with the subgroups ANME-1b and ANME-3, were recovered only from the Murono site albeit a greatly reduced relative abundance in the community compared to those of typical submarine MVs. The bacterial sequences affiliated to Caldatribacteriota JS1 were recovered from both sites; on the other hand, sulfate-reducing bacteria (SRB) of Desulfobulbaceae was recovered only from the Murono site. The major difference of on-land MVs from submarine MVs is that the high concentrations of sulfate are not always introduced to the subsurface from above. In addition, the XRD analysis of Murono shows the absence of sulfate-, sulfur-related mineral. Therefore, we hypothesize one scenario of ANME-1b and ANME-3 thriving at the depth of the Murono site independently from SRB, which is similar to the situations reported in some other methane-seeping sites with a sulfate-depleted condition. We note that previous investigations speculate that the erupted materials from Murono and Kamou originate from the Miocene marine strata. The fact that SRB (Desulfobulbaceae) capable of associating with ANME-3 was recovered from the Murono site presents an alternative scenario: the old sea-related juvenile water somehow worked as the source of additional sulfur-related components for the SRB-ANME syntrophic consortium forming at a deeper zone of the site. However, the reason for the differences between Murono and Kamou is still unknown, and this requires further investigation.


Asunto(s)
Archaea , Metano , Archaea/genética , ARN Ribosómico 16S/genética , Japón , Sedimentos Geológicos/microbiología , Filogenia , Bacterias/genética , Sulfatos , Oxidación-Reducción
2.
Sci Rep ; 12(1): 6709, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468926

RESUMEN

Foot-and-mouth disease virus (FMDV) and classical swine fever virus (CSFV) possess positive-sense single-stranded RNA genomes and an internal ribosomal entry site (IRES) element within their 5'-untranslated regions. To investigate the common host factors associated with these IRESs, we established cell lines expressing a bicistronic luciferase reporter plasmid containing an FMDV-IRES or CSFV-IRES element between the Renilla and firefly luciferase genes. First, we treated FMDV-IRES cells with the French maritime pine extract, Pycnogenol (PYC), and examined its suppressive effect on FMDV-IRES activity, as PYC has been reported to have antiviral properties. Next, we performed microarray analysis to identify the host factors that modified their expression upon treatment with PYC, and confirmed their function using specific siRNAs. We found that polycystic kidney disease 1-like 3 (PKD1L3) and ubiquitin-specific peptidase 31 (USP31) were associated with FMDV-IRES activity. Moreover, silencing of these factors significantly suppressed CSFV-IRES activity. Thus, PKD1L3 and USP31 are host factors associated with the functions of FMDV- and CSFV-IRES elements.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/metabolismo , Virus de la Fiebre Aftosa/genética , Sitios Internos de Entrada al Ribosoma , Porcinos
3.
Virus Genes ; 55(6): 786-794, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31367998

RESUMEN

Foot-and-mouth disease (FMD) is a host-restricted disease of cloven-hoofed animals, such as cattle and pigs. There are seven major serotypes of FMD virus that exhibit high antigenic variation, making vaccine strain selection difficult. However, there is an internal ribosomal entry site (IRES) element within the 5' untranslated region of the FMD virus (FMDV) RNA genome that is relatively conserved among FMDV serotypes and could be used as a pan-serotype target for disease interventions. To determine the potential for targeting the IRES as promising drug target, we designed a short interfering RNA (siRNA) targeting a relatively conserved region in the FMDV-IRES. The siRNA affected FMDV-IRES expression but not the expression of the encephalomyocarditis virus or hepatitis C virus IRES. To evaluate the effects of siRNA-mediated silencing, we established cell lines expressing a bicistronic luciferase reporter plasmid, which contained an FMDV-IRES element between the Renilla and firefly luciferase genes. The designed siRNA inhibited FMDV-IRES-mediated translation in a concentration-dependent manner. In order to sustain this inhibitory effect, we designed a short hairpin RNA (shRNA)-expressing lentiviral vector. The results showed that the lenti-shRNA vector significantly suppressed FMDV-IRES activity for up to 2 weeks in cell culture. Thus, our findings in this study provided a basis for the development of effective pan-serotype FMDV inhibitors.


Asunto(s)
Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/genética , Sitios Internos de Entrada al Ribosoma/genética , Replicación Viral/genética , Animales , Bovinos , Línea Celular , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/patogenicidad , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/patogenicidad , Regulación Viral de la Expresión Génica/genética , Silenciador del Gen , Hepacivirus/genética , Hepacivirus/patogenicidad , ARN Interferente Pequeño/genética , Serogrupo , Porcinos/virología
4.
Chemistry ; 25(53): 12308-12315, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31328834

RESUMEN

Oxygen-sensitive and near-infrared (NIR) luminescent YbIII coordination polymers incorporating ligands based on pyrene derivatives were synthesized: YbIII -TBAPy and YbIII -TIAPy (TBAPy: 1,3,6,8-tetrakis(p-benzoate)pyrene; TIAPy: 1,3,6,8-tetrakis(3,5-isophthalic acid)pyrene). The coordination structures of these materials have been characterized by means of electrospray ionization mass spectrometry, X-ray diffraction analysis, and thermogravimetric analysis. Moreover, the porous structure of YbIII -TIAPy has been evaluated by measuring its N2 adsorption isotherm. The NIR luminescence properties of YbIII -TBAPy and YbIII -TIAPy have been examined by acquiring emission spectra and determining emission lifetimes under air or argon and in vacuo. YbIII -TIAPy exhibited high thermal stability (with a decomposition temperature of 400 °C), intense luminescence (with an emission quantum yield under argon of 6.6 %), and effective oxygen-sensing characteristics. These results suggest that NIR luminescent YbIII coordination polymers prepared using pyrene derivatives could have applications in novel thermo-stable oxygen sensors.

5.
Sci Adv ; 2(8): e1600157, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27493993

RESUMEN

Forsterite (Mg2SiO4) is one of the major planetary materials, and its behavior under extreme conditions is important to understand the interior structure of large planets, such as super-Earths, and large-scale planetary impact events. Previous shock compression measurements of forsterite indicate that it may melt below 200 GPa, but these measurements did not go beyond 200 GPa. We report the shock response of forsterite above ~250 GPa, obtained using the laser shock wave technique. We simultaneously measured the Hugoniot and temperature of shocked forsterite and interpreted the results to suggest the following: (i) incongruent crystallization of MgO at 271 to 285 GPa, (ii) phase transition of MgO at 285 to 344 GPa, and (iii) remelting above ~470 to 500 GPa. These exothermic and endothermic reactions are seen to occur under extreme conditions of pressure and temperature. They indicate complex structural and chemical changes in the system MgO-SiO2 at extreme pressures and temperatures and will affect the way we understand the interior processes of large rocky planets as well as material transformation by impacts in the formation of planetary systems.


Asunto(s)
Fenómenos Físicos , Presión , Compuestos de Silicona , Rayos Láser , Transición de Fase
6.
Orig Life Evol Biosph ; 43(3): 221-45, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23877440

RESUMEN

Cyanide compounds are amongst the most important molecules of the origin of life. Here, we demonstrate the importance of mid-size (0.1-1 km in diameter) hence frequent meteoritic impacts to the cyanide inventory on the early Earth. Subsequent aerodynamic ablation and chemical reactions with the ambient atmosphere after oblique impacts were investigated by both impact and laser experiments. A polycarbonate projectile and graphite were used as laboratory analogs of meteoritic organic matter. Spectroscopic observations of impact-generated ablation vapors show that laser irradiation to graphite within an N2-rich gas can produce a thermodynamic environment similar to that produced by oblique impacts. Thus, laser ablation was used to investigate the final chemical products after this aerodynamic process. We found that a significant fraction (>0.1 mol%) of the vaporized carbon is converted to HCN and cyanide condensates, even when the ambient gas contains as much as a few hundred mbar of CO2. As such, the column density of cyanides after carbon-rich meteoritic impacts with diameters of 600 m would reach ~10 mol/m(2) over ~10(2) km(2) under early Earth conditions. Such a temporally and spatially concentrated supply of cyanides may have played an important role in the origin of life.


Asunto(s)
Atmósfera/química , Evolución Química , Cianuro de Hidrógeno/química , Meteoroides , Carbono/química , Planeta Tierra , Concentración de Iones de Hidrógeno , Rayos Láser , Nitrógeno/química , Oxidación-Reducción
7.
Science ; 327(5970): 1214-8, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20203042

RESUMEN

The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.


Asunto(s)
Extinción Biológica , Fósiles , Planetas Menores , Animales , Sedimentos Geológicos , México
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...