Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(2): 279-292, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38240752

RESUMEN

Gastric cancer metastasis is a major cause of mortality worldwide. Inhibition of RUNX3 in gastric cancer cell lines reduced migration, invasion, and anchorage-independent growth in vitro. Following splenic inoculation, CRISPR-mediated RUNX3-knockout HGC-27 cells show suppression of xenograft growth and liver metastasis. We interrogated the potential of RUNX3 as a metastasis driver in gastric cancer by profiling its target genes. Transcriptomic analysis revealed strong involvement of RUNX3 in the regulation of multiple developmental pathways, consistent with the notion that Runt domain transcription factor (RUNX) family genes are master regulators of development. RUNX3 promoted "cell migration" and "extracellular matrix" programs, which are necessary for metastasis. Of note, we found pro-metastatic genes WNT5A, CD44, and VIM among the top differentially expressed genes in RUNX3 knockout versus control cells. Chromatin immunoprecipitation sequencing and HiChIP analyses revealed that RUNX3 bound to the enhancers and promoters of these genes, suggesting that they are under direct transcriptional control by RUNX3. We show that RUNX3 promoted metastasis in part through its upregulation of WNT5A to promote migration, invasion, and anchorage-independent growth in various malignancies. Our study therefore reveals the RUNX3-WNT5A axis as a key targetable mechanism for gastric cancer metastasis. SIGNIFICANCE: Subversion of RUNX3 developmental gene targets to metastasis program indicates the oncogenic nature of inappropriate RUNX3 regulation in gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Perfilación de la Expresión Génica , Genes del Desarrollo , Neoplasias Gástricas/genética , Regulación hacia Arriba/genética
2.
Org Lett ; 25(49): 8952-8956, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38055630

RESUMEN

An asymmetric synthesis via an axially chiral arylaryne intermediate was developed. A cycloaddition reaction with various arynophiles was used to obtain chiral biaryl compounds while preserving the enantiomeric excess (ee) of a precursor even though the reaction proceeds through an arylaryne intermediate, whose ee decreases on a time-dependent basis. High chiral transfer from a precursor to a product was observed not only at low temperature (-78 °C) but also at room temperature.

3.
Commun Biol ; 6(1): 689, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400551

RESUMEN

MYC is one of the most commonly dysregulated proto-oncogenes in cancer. MYC promotes cancer initiation and maintenance by regulating multiple biological processes, such as proliferation and stem cell function. Here, we show that developmental regulator RUNX3 targets MYC protein for rapid degradation through the glycogen synthase kinase-3 beta-F-box/WD repeat-containing protein 7 (GSK3ß-FBXW7) proteolytic pathway. The evolutionarily conserved Runt domain of RUNX3 interacts directly with the basic helix-loop-helix leucine zipper of MYC, resulting in the disruption of MYC/MAX and MYC/MIZ-1 interactions, enhanced GSK3ß-mediated phosphorylation of MYC protein at threonine-58 and its subsequent degradation via the ubiquitin-proteasomal pathway. We therefore uncover a previously unknown mode of MYC destabilization by RUNX3 and provide an explanation as to why RUNX3 inhibits early-stage cancer development in gastrointestinal and lung mouse cancer models.


Asunto(s)
Núcleo Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Neoplasias Pulmonares , Animales , Ratones , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteolisis , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo
4.
Methods Mol Biol ; 2691: 3-17, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355533

RESUMEN

Identification of unique gene markers of normal and cancer stem cells is an effective strategy to study cells of origin and understand tumor behavior. Lineage tracing experiments using the Cre recombinase driven by a stem cell-specific promoter in the CreERT2 reporter mouse model enables identification of adult stem cells and delineation of stem cell activities in vivo. In our recent research on the mouse stomach, Iqgap3 was identified as a homeostatic stem cell marker located in the isthmus of the stomach epithelium. Lineage tracing with the Iqgap3-2A-CreERT2;Rosa26-LSL-tdTomato mouse model demonstrated stem cell activity in Iqgap3-expressing cells. Using the Iqgap3-2A-CreERT2 mouse model to target oncogenic KrasG12D expression to Iqgap3-expressing cells, we observed the rapid development of precancerous metaplasia in the stomach and proposed that aberrant Iqgap3-expressing cells may be critical determinants of early carcinogenesis. In this chapter, we detail a lineage tracing protocol to assess stem cell activity in the murine stomach. We also describe the procedure of inducing KrasG12D expression in Iqgap3-expressing homeostatic stem cells to explore their role as cells of origin and to trace the early cellular changes that precede neoplastic transformation.


Asunto(s)
Células Madre Adultas , Neoplasias Gástricas , Ratones , Animales , Ratones Transgénicos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Gástricas/patología , Mucosa Gástrica/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Adultas/metabolismo
5.
STAR Protoc ; 4(2): 102338, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37243602

RESUMEN

We present a detailed protocol to identify and validate IGF2BP1 target genes in pluripotent human embryonic carcinoma cells (NTERA-2). We first identify the target genes through RNA-immunoprecipitation (RIP) sequencing. We then validate the identified targets through the use of RIP-qPCR assays, determine the m6A status of target genes by m6A-IP, and perform functional validation by quantifying changes in mRNA or protein expression levels upon knockdown of IGF2BP1 or methyltransferases in NTERA-2. For complete details on the use and execution of this protocol, please refer to Myint et al. (2022).1.

6.
Cells ; 12(3)2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36766749

RESUMEN

The runt-related transcription factors (RUNX) play prominent roles in cell cycle progression, differentiation, apoptosis, immunity and epithelial-mesenchymal transition. There are three members in the mammalian RUNX family, each with distinct tissue expression profiles. RUNX genes play unique and redundant roles during development and adult tissue homeostasis. The ability of RUNX proteins to influence signaling pathways, such as Wnt, TGFß and Hippo-YAP, suggests that they integrate signals from the environment to dictate cell fate decisions. All RUNX genes hold master regulator roles, albeit in different tissues, and all have been implicated in cancer. Paradoxically, RUNX genes exert tumor suppressive and oncogenic functions, depending on tumor type and stage. Unlike RUNX1 and 2, the role of RUNX3 in stem cells is poorly understood. A recent study using cancer-derived RUNX3 mutation R122C revealed a gatekeeper role for RUNX3 in gastric epithelial stem cell homeostasis. The corpora of RUNX3R122C/R122C mice showed a dramatic increase in proliferating stem cells as well as inhibition of differentiation. Tellingly, RUNX3R122C/R122C mice also exhibited a precancerous phenotype. This review focuses on the impact of RUNX3 dysregulation on (1) stem cell fate and (2) the molecular mechanisms underpinning early carcinogenesis.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal , Neoplasias , Animales , Ratones , Biología , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Mamíferos/metabolismo , Mutación , Neoplasias/genética , Transducción de Señal , Humanos
7.
iScience ; 25(10): 105194, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36217548

RESUMEN

We reported earlier that IQGAP3 is an important stem cell factor in rapidly proliferating isthmus stem cells in the stomach and that IQGAP3 expression is robustly induced in terminally differentiated chief cells and de-differentiated cells following tissue damage. The elevated IQGAP3 expression in cancer and its association with metastasis suggest a fundamental role for IQGAP3 in proliferating cancer stem cells. What causes IQGAP3 upregulation in cancer is unclear. Here, we show that IGF2BP1 and IQGAP3 expression levels are highest in the blastocyst, with both decreasing during adulthood. This suggests that IQGAP3, like IGF2BP1, is an early developmental gene that is aberrantly upregulated upon re-expression of IGF2BP1 during carcinogenesis. IGF2BP1 binds and stabilizes m6A-modified IQGAP3 transcripts. Downstream targets of IGF2BP1, namely SRF and FOXM1, also upregulate IQGAP3 expression. These multiple layers of IQGAP3 regulation, which may safeguard against inappropriate stem cell proliferation, present additional drug targets to inhibit IQGAP3-driven malignant growth.

8.
Stem Cells ; 40(1): 112-122, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35511868

RESUMEN

Mammary gland homeostasis is maintained by adult tissue stem-progenitor cells residing within the luminal and basal epithelia. Dysregulation of mammary stem cells is a key mechanism for cancer development. However, stem cell characterization is challenging because reporter models using cell-specific promoters do not fully recapitulate the mammary stem cell populations. We previously found that a 270-basepair Runx1 enhancer element, named eR1, marked stem cells in the blood and stomach. Here, we identified eR1 activity in a rare subpopulation of the ERα-negative luminal epithelium in mouse mammary glands. Lineage-tracing using an eR1-CreERT2 mouse model revealed that eR1+ luminal cells generated the entire luminal lineage and milk-secreting alveoli-eR1 therefore specifically marks lineage-restricted luminal stem cells. eR1-targeted-conditional knockout of Runx1 led to the expansion of luminal epithelial cells, accompanied by elevated ERα expression. Our findings demonstrate a definitive role for Runx1 in the regulation of the eR1-positive luminal stem cell proliferation during mammary homeostasis. Our findings identify a mechanistic link for Runx1 in stem cell proliferation and its dysregulation in breast cancer. Runx1 inactivation is therefore likely to be an early hit in the cell-of-origin of ERα+ luminal type breast cancer.


Asunto(s)
Receptor alfa de Estrógeno , Glándulas Mamarias Animales , Animales , Linaje de la Célula , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Elementos de Facilitación Genéticos/genética , Células Epiteliales/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Ratones , Células Madre/metabolismo
9.
Cell Mol Gastroenterol Hepatol ; 13(5): 1317-1345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35074568

RESUMEN

BACKGROUND & AIMS: RUNX transcription factors play pivotal roles in embryonic development and neoplasia. We previously identified the single missense mutation R122C in RUNX3 from human gastric cancer. However, how RUNX3R122C mutation disrupts stem cell homeostasis and promotes gastric carcinogenesis remained unclear. METHODS: To understand the oncogenic nature of this mutation in vivo, we generated the RUNX3R122C knock-in mice. Stomach tissues were harvested, followed by histologic and immunofluorescence staining, organoid culture, flow cytometry to isolate gastric corpus isthmus and nonisthmus epithelial cells, and RNA extraction for transcriptomic analysis. RESULTS: The corpus tissue of RUNX3R122C/R122C homozygous mice showed a precancerous phenotype such as spasmolytic polypeptide-expressing metaplasia. We observed mucous neck cell hyperplasia; massive reduction of pit, parietal, and chief cell populations; as well as a dramatic increase in the number of rapidly proliferating isthmus stem/progenitor cells in the corpus of RUNX3R122C/R122C mice. Transcriptomic analyses of the isolated epithelial cells showed that the cell-cycle-related MYC target gene signature was enriched in the corpus epithelial cells of RUNX3R122C/R122C mice compared with the wild-type corpus. Mechanistically, RUNX3R122C mutant protein disrupted the regulation of the restriction point where cells decide to enter either a proliferative or quiescent state, thereby driving stem cell expansion and limiting the ability of cells to terminally differentiate. CONCLUSIONS: RUNX3R122C missense mutation is associated with the continuous cycling of isthmus stem/progenitor cells, maturation arrest, and development of a precancerous state. This work highlights the importance of RUNX3 in the prevention of metaplasia and gastric cancer.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Lesiones Precancerosas , Neoplasias Gástricas , Animales , Carcinogénesis/patología , Mucosa Gástrica , Metaplasia/genética , Metaplasia/patología , Ratones , Mutación Puntual , Lesiones Precancerosas/patología , Células Madre/metabolismo , Neoplasias Gástricas/patología
10.
Gastroenterology ; 161(6): 1907-1923.e26, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34391772

RESUMEN

BACKGROUND & AIMS: Metaplasia and dysplasia in the corpus are reportedly derived from de-differentiation of chief cells. However, the cellular origin of metaplasia and cancer remained uncertain. Therefore, we investigated whether pepsinogen C (PGC) transcript-expressing cells represent the cellular origin of metaplasia and cancer using a novel Pgc-specific CreERT2 recombinase mouse model. METHODS: We generated a Pgc-mCherry-IRES-CreERT2 (Pgc-CreERT2) knock-in mouse model. Pgc-CreERT2/+ and Rosa-EYFP mice were crossed to generate Pgc-CreERT2/Rosa-EYFP (Pgc-CreERT2/YFP) mice. Gastric tissues were collected, followed by lineage-tracing experiments and histologic and immunofluorescence staining. We further established Pgc-CreERT2;KrasG12D/+ mice and investigated whether PGC transcript-expressing cells are responsible for the precancerous state in gastric glands. To investigate cancer development from PGC transcript-expressing cells with activated Kras, inactivated Apc, and Trp53 signaling pathways, we crossed Pgc-CreERT2/+ mice with conditional KrasG12D, Apcflox, Trp53flox mice. RESULTS: Expectedly, mCherry mainly labeled chief cells in the Pgc-CreERT2 mice. However, mCherry was also detected throughout the neck cell and isthmal stem/progenitor regions, albeit at lower levels. In the Pgc-CreERT2;KrasG12D/+ mice, PGC transcript-expressing cells with KrasG12D/+ mutation presented pseudopyloric metaplasia. The early induction of proliferation at the isthmus may reflect the ability of isthmal progenitors to react rapidly to Pgc-driven KrasG12D/+ oncogenic mutation. Furthermore, Pgc-CreERT2;KrasG12D/+;Apcflox/flox mice presented intramucosal dysplasia/carcinoma and Pgc-CreERT2;KrasG12D/+;Apcflox/flox;Trp53flox/flox mice presented invasive and metastatic gastric carcinoma. CONCLUSIONS: The Pgc-CreERT2 knock-in mouse is an invaluable tool to study the effects of successive oncogenic activation in the mouse corpus. Time-course observations can be made regarding the responses of isthmal and chief cells to oncogenic insults. We can observe stomach-specific tumorigenesis from the beginning to metastatic development.


Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica/genética , Células Principales Gástricas/enzimología , Integrasas/genética , Pepsinógeno C/genética , Lesiones Precancerosas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Gástricas/genética , Activación Transcripcional , Animales , Desdiferenciación Celular , Linaje de la Célula , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Principales Gástricas/patología , Regulación Neoplásica de la Expresión Génica , Genes APC , Predisposición Genética a la Enfermedad , Integrasas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metaplasia , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Pepsinógeno C/metabolismo , Fenotipo , Lesiones Precancerosas/enzimología , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína Fluorescente Roja
11.
Gut ; 70(10): 1833-1846, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33293280

RESUMEN

OBJECTIVE: Tissue stem cells are central regulators of organ homoeostasis. We looked for a protein that is exclusively expressed and functionally involved in stem cell activity in rapidly proliferating isthmus stem cells in the stomach corpus. DESIGN: We uncovered the specific expression of Iqgap3 in proliferating isthmus stem cells through immunofluorescence and in situ hybridisation. We performed lineage tracing and transcriptomic analysis of Iqgap3 +isthmus stem cells with the Iqgap3-2A-tdTomato mouse model. Depletion of Iqgap3 revealed its functional importance in maintenance and proliferation of stem cells. We further studied Iqgap3 expression and the associated gene expression changes during tissue repair after tamoxifen-induced damage. Immunohistochemistry revealed elevated expression of Iqgap3 in proliferating regions of gastric tumours from patient samples. RESULTS: Iqgap3 is a highly specific marker of proliferating isthmus stem cells during homoeostasis. Iqgap3+isthmus stem cells give rise to major cell types of the corpus unit. Iqgap3 expression is essential for the maintenance of stem potential. The Ras pathway is a critical partner of Iqgap3 in promoting strong proliferation in isthmus stem cells. The robust induction of Iqgap3 expression following tissue damage indicates an active role for Iqgap3 in tissue regeneration. CONCLUSION: IQGAP3 is a major regulator of stomach epithelial tissue homoeostasis and repair. The upregulation of IQGAP3 in gastric cancer suggests that IQGAP3 plays an important role in cancer cell proliferation.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Mucosa Gástrica/citología , Homeostasis/fisiología , Células Madre/citología , Neoplasias Gástricas/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Neoplasias Gástricas/tratamiento farmacológico , Tamoxifeno/toxicidad
12.
Chem Pharm Bull (Tokyo) ; 68(12): 1201-1209, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268652

RESUMEN

Regioselectivity for intramolecular Diels-Alder (IMDA) reactions of 6-acetoxy-6-alkenylcyclohexa-2,4-dien-1-ones that were formed by oxidation of 2-alkenylphenols with lead tetraacetate in acetic acid were studied. Bridged regioselectivity was observed in the IMDA reactions of 6-acetoxy-6-alkenylcyclohexa-2,4-dien-1-ones having a dienophile part which could conjugate with an aromatic group. Bridged seven- and eight-membered rings and bicyclo[2.2.2]octane skeletons were constructed by the present IMDA reactions. Density functional theory (DFT) calculations suggested that conjugation of the dienophile with neighboring aromatic groups lowered the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap and preceded bridged [4 + 2] adducts.


Asunto(s)
Compuestos Bicíclicos con Puentes/síntesis química , Octanos/síntesis química , Compuestos Bicíclicos con Puentes/química , Reacción de Cicloadición , Teoría Funcional de la Densidad , Estructura Molecular , Octanos/química , Estereoisomerismo
13.
Chem Pharm Bull (Tokyo) ; 68(12): 1220-1225, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268654

RESUMEN

The nitrolactonization of alkenyl carboxylic acids mediated by Fe(NO3)3·9H2O has been developed. Nitrolactones were obtained in up to 93% yield by treatment of alkenyl carboxylic acids with Fe(NO3)3·9H2O. Mechanistic studies disclosed that the reaction proceeded through a radical intermediate generated from addition of NO2 to alkenyl carboxylic acids.


Asunto(s)
Ácidos Carboxílicos/química , Desarrollo de Medicamentos , Compuestos Férricos/química , Nitratos/química , Nitrocompuestos/síntesis química , Estructura Molecular , Nitrocompuestos/química , Agua/química
14.
Neurochem Res ; 45(11): 2664-2678, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32844295

RESUMEN

Understanding of the underlying mechanism of epilepsy is desired since some patients fail to control their seizures. The carnitine/organic cation transporter OCTN1/SLC22A4 is expressed in brain neurons and transports food-derived antioxidant ergothioneine (ERGO), L-carnitine, and spermine, all of which may be associated with epilepsy. This study aimed to clarify the possible association of this transporter with epileptic seizures. In both pentylenetetrazole (PTZ)-induced acute seizure and kindling models, ocnt1 gene knockout mice (octn1-/-) showed lower seizure scores compared with wild-type mice. Up-regulation of the epilepsy-related genes, c-fos and Arc, and the neurotrophic factor BDNF following PTZ administration was observed in the hippocampus of wild-type, but not octn1-/- mice. To find the OCTN1 substrate associated with the seizure, untargeted metabolomics analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry was conducted on extracts from the hippocampus, frontal cortex, and plasma of both strains, leading to the identification of a plant alkaloid homostachydrine as a compound present in a lower concentration in octn1-/- mice. OCTN1-mediated uptake of deuterium-labeled homostachydrine was confirmed in OCTN1-transfected HEK293 cells, suggesting that this compound is a substrate of OCTN1. Homostachydrine administration increased PTZ-induced acute seizure scores and the expression of Arc in the hippocampus and that of Arc, Egr1, and BDNF in the frontal cortex. Conversely, administration of the OCTN1 substrate/inhibitor ERGO inhibited PTZ-induced kindling and reduced the plasma homostachydrine concentration. Thus, these results suggest that OCTN1 is at least partially associated with PTZ-induced seizures, which is potentially deteriorated by treatment with homostachydrine, a newly identified food-derived OCTN1 substrate.


Asunto(s)
Epilepsia/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Piperidinas/farmacología , Convulsiones/metabolismo , Simportadores/metabolismo , Xenobióticos/farmacología , Animales , Antioxidantes/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Epilepsia/inducido químicamente , Ergotioneína/farmacología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Pentilenotetrazol , Piperidinas/metabolismo , Piperidinas/orina , Convulsiones/inducido químicamente , Simportadores/genética , Xenobióticos/metabolismo , Xenobióticos/orina
15.
Gut ; 69(10): 1738-1749, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31937549

RESUMEN

OBJECTIVE: Intestinal metaplasia (IM) is a premalignant stage that poses a greater risk for subsequent gastric cancer (GC). However, factors regulating IM to GC progression remain unclear. Previously, activated DNA damage response (DDR) signalling factors were shown to engage tumour-suppressive networks in premalignant lesions. Here, we interrogate the relationship of DDR signalling to mutational accumulation in IM lesions. DESIGN: IM biopsies were procured from the gastric cancer epidemiology programme, an endoscopic surveillance programme where biopsies have been subjected to (epi)genomic characterisation. IM samples were classified as genome-stable or genome-unstable based on their mutational burden/somatic copy-number alteration (CNA) profiles. Samples were probed for DDR signalling and cell proliferation, using the markers γH2AX and MCM2, respectively. The expression of the gastric stem cell marker, CD44v9, was also assessed. Tissue microarrays representing the GC progression spectrum were included. RESULTS: MCM2-positivity increased during GC progression, while γH2AX-positivity showed modest increase from normal to gastritis and IM stages, with further increase in GC. γH2AX levels correlated with the extent of chronic inflammation. Interestingly, genome-stable IM lesions had higher γH2AX levels underscoring a protective anti-cancer role for DDR signalling. In contrast, genome-unstable IM lesions with higher mutational burden/CNAs had lower γH2AX levels, elevated CD44v9 expression and modest promoter hypermethylation of DNA repair genes WRN, MLH1 and RAD52. CONCLUSIONS: Our data suggest that IM lesions with active DDR will likely experience a longer latency at the premalignant state until additional hits that override DDR signalling clonally expand and promote progression. These observations provide insights on the factors governing IM progression.


Asunto(s)
Mucosa Gástrica/patología , Histonas/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Homólogo 1 de la Proteína MutL/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Neoplasias Gástricas , Helicasa del Síndrome de Werner/genética , Biopsia/métodos , Daño del ADN/genética , Metilación de ADN , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores de Hialuranos/análisis , Masculino , Metaplasia/genética , Metaplasia/patología , Persona de Mediana Edad , Mutación , Factores Protectores , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
16.
Chem Pharm Bull (Tokyo) ; 67(7): 729-732, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31257328

RESUMEN

Intramolecular Büchner reaction of 1-diazo-5-phenylpentan-2-ones followed by oxidation with SeO2 or O2 in the presence of silica gel regioselectively gave 8-formyl-1-tetralones or one-carbon-lacking 1-tetralones, respectively.


Asunto(s)
Oxígeno/química , Pentanonas/química , Óxidos de Selenio/química , Tetralonas/química , Oxidación-Reducción , Estereoisomerismo
17.
J Exp Med ; 216(7): 1599-1614, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31076455

RESUMEN

Before the emergence of hematopoietic stem cells (HSCs), lineage-restricted progenitors, such as erythro-myeloid progenitors (EMPs), are detected in the embryo or in pluripotent stem cell cultures in vitro. Although both HSCs and EMPs are derived from hemogenic endothelium, it remains unclear how and when these two developmental programs are segregated during ontogeny. Here, we show that hepatic leukemia factor (Hlf) expression specifically marks a developmental continuum between HSC precursors and HSCs. Using the Hlf-tdTomato reporter mouse, we found that Hlf is expressed in intra-aortic hematopoietic clusters and fetal liver HSCs. In contrast, EMPs and yolk sac hematopoietic clusters before embryonic day 9.5 do not express Hlf HSC specification, regulated by the Evi-1/Hlf axis, is activated only within Hlf+ nascent hematopoietic clusters. These results strongly suggest that HSCs and EMPs are generated from distinct cohorts of hemogenic endothelium. Selective induction of the Hlf+ lineage pathway may lead to the in vitro generation of HSCs from pluripotent stem cells.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Células Precursoras Eritroides/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Células Progenitoras Mieloides/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Linaje de la Célula , Femenino , Hígado/embriología , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Células Madre Pluripotentes/metabolismo , Saco Vitelino/metabolismo
18.
Org Biomol Chem ; 15(25): 5268-5271, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28613322

RESUMEN

Nucleophilic alkynes bearing sulfonamide, trimethylsilyl, or p-methoxyphenyl groups at the sp carbon reacted with 3-ethoxycyclobutanones to give formal [4 + 2] cycloadducts by activation with TiCl4. Reactions with 2-monoalkyl and 2-nonsubstituted 3-ethoxycyclobutanones gave phenol derivatives directly by benzannulation, while the use of 2,2-dimethyl-3-ethoxycyclobutanone gave the corresponding dienones, which were converted to pentasubstituted phenols by dienone-phenol rearrangement. Regioselectivity that depended on the activation conditions of dienone-phenol rearrangement is also described.

19.
Gastroenterology ; 152(1): 218-231.e14, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27670082

RESUMEN

BACKGROUND & AIMS: Little is known about the mechanisms of gastric carcinogenesis, partly because it has been a challenge to identify characterize gastric stem cells. Runx genes regulate development and their products are transcription factors associated with cancer development. A Runx1 enhancer element, eR1, is a marker of hematopoietic stem cells. We studied expression from eR1 in the stomach and the roles of gastric stem cells in gastric carcinogenesis in transgenic mice. METHODS: We used in situ hybridization and immunofluorescence analyses to study expression of Runx1 in gastric tissues from C57BL/6 (control) mice. We then created mice that expressed enhanced green fluorescent protein (EGFP) or CreERT2 under the control of eR1 (eR1-CreERT2;Rosa-Lox-Stop-Lox [LSL]-tdTomato, eR1-CreERT2;Rosa-LSL-EYFP mice). Gastric tissues were collected and lineage-tracing experiments were performed. Gastric organoids were cultured from eR1-CreERT2(5-2);Rosa-LSL-tdTomato mice and immunofluorescence analyses were performed. We investigated the effects of expressing oncogenic mutations in stem cells under control of eR1 using eR1-CreERT2;LSL-KrasG12D/+ mice; gastric tissues were collected and analyzed by histology and immunofluorescence. RESULTS: Most proliferation occurred in the isthmus; 86% of proliferating cells were RUNX1-positive and 76% were MUC5AC-positive. In eR1-EGFP mice, EGFP signals were detected mainly in the upper part of the gastric unit, and 83% of EGFP-positive cells were located in the isthmus/pit region. We found that eR1 marked undifferentiated stem cells in the isthmus and a smaller number of terminally differentiated chief cells at the base. eR1 also marked cells in the pyloric gland in the antrum. Lineage-tracing experiments demonstrated that stem cells in the isthmus and antrum continuously gave rise to mature cells to maintain the gastric unit. eR1-positive cells in the isthmus and pyloric gland generated organoid cultures in vitro. In eR1-CreERT2;LSL-Kras G12D/+ mice, MUC5AC-positive cells rapidly differentiated from stem cells in the isthmus, resulting in distinct metaplastic lesions similar to that observed in human gastric atrophy. CONCLUSIONS: Using lineage-tracing experiments in mice, we found that a Runx1 enhancer element, eR1, promotes its expression in the isthmus stem cells of stomach corpus as well as pyloric gland in the antrum. We were able to use eR1 to express oncogenic mutations in gastric stem cells, proving a new model for studies of gastric carcinogenesis.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Elementos de Facilitación Genéticos/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Antro Pilórico/patología , ARN Mensajero/metabolismo , Células Madre/metabolismo , Células Madre/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Animales , Carcinogénesis , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Humanos , Antígeno Ki-67/metabolismo , Metaplasia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mucina 5AC/metabolismo , Antro Pilórico/metabolismo , Técnicas de Cultivo de Tejidos
20.
Org Lett ; 18(19): 4951-4953, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27648942

RESUMEN

α-Chloro- or α-bromo-γ-hydroxyenamides were synthesized by the reaction of an ynamide, titanium tetrahalide, and an aldehyde or a ketone. A γ-hydroxy trisubstituted enamide was prepared stereoselectively by Suzuki coupling of an obtained α-chloro-γ-hydroxyenamide with phenyl boronic acid. Intramolecular cyclization of α-chloro-γ-hydroxyenamide took place to provide a 2,3-dihydrobenzoisothiazole 1,1-dioxide derivative by palladium-catalyzed C-H activation of the tosyl group. Hydrochlorination of ynamides proceeded to give α-chloroenamides by treatment with titanium tetrachloride followed by addition of water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA