Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(13): e2215030120, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36952378

RESUMEN

While the effective g-factor can be anisotropic due to the spin-orbit interaction (SOI), its existence in solids cannot be simply asserted from a band structure, which hinders progress on studies from such viewpoints. The effective g-factor in bismuth (Bi) is largely anisotropic; especially for holes at T-point, the effective g-factor perpendicular to the trigonal axis is negligibly small (<0.112), whereas the effective g-factor along the trigonal axis is very large (62.7). We clarified in this work that the large anisotropy of effective g-factor gives rise to the large spin conversion anisotropy in Bi from experimental and theoretical approaches. Spin-torque ferromagnetic resonance was applied to estimate the spin conversion efficiency in rhombohedral (110) Bi to be 17 to 27%, which is unlike the negligibly small efficiency in Bi(111). Harmonic Hall measurements support the large spin conversion efficiency in Bi(110). A large spin conversion anisotropy as the clear manifestation of the anisotropy of the effective g-factor is observed. Beyond the emblematic case of Bi, our study unveiled the significance of the effective g-factor anisotropy in condensed-matter physics and can pave a pathway toward establishing novel spin physics under g-factor control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...