Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(8): e1011723, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39133751

RESUMEN

Most essential cellular functions are performed by proteins assembled into larger complexes. Fluorescence Polarization Microscopy (FPM) is a powerful technique that goes beyond traditional imaging methods by allowing researchers to measure not only the localization of proteins within cells, but also their orientation or alignment within complexes or cellular structures. FPM can be easily integrated into standard widefield microscopes with the addition of a polarization modulator. However, the extensive image processing and analysis required to interpret the data have limited its widespread adoption. To overcome these challenges and enhance accessibility, we introduce OOPS (Object-Oriented Polarization Software), a MATLAB package for object-based analysis of FPM data. By combining flexible image segmentation and novel object-based analyses with a high-throughput FPM processing pipeline, OOPS empowers researchers to simultaneously study molecular order and orientation in individual biological structures; conduct population assessments based on morphological features, intensity statistics, and FPM measurements; and create publication-quality visualizations, all within a user-friendly graphical interface. Here, we demonstrate the power and versatility of our approach by applying OOPS to punctate and filamentous structures.


Asunto(s)
Polarización de Fluorescencia , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Programas Informáticos , Microscopía Fluorescente/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Polarización de Fluorescencia/métodos , Biología Computacional/métodos , Humanos , Algoritmos
2.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39120608

RESUMEN

The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.


Asunto(s)
Desmosomas , Desmosomas/metabolismo , Desmosomas/ultraestructura , Humanos , Animales , Adhesión Celular , Transducción de Señal
3.
Biophys J ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38853434

RESUMEN

Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses. Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-mediated endocytosis (CME) in non-ECs. It remains elusive how ECs maintain CME in these biophysically unfavorable conditions. Previously, we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show that endocytic dynamics are similar between statically cultured human umbilical vein endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here, we asked whether biophysical stresses generated by blood flow influence CME. We used our data processing platform-DrSTAR-to examine if clathrin dynamics are altered in HUVECs after experiencing fluidic shear stress (FSS). We found that HUVECs cultivated under a physiological level of FSS had increased clathrin dynamics compared with static controls. FSS increased both clathrin-coated vesicle formation and nonproductive flat clathrin lattices by 2.3-fold and 1.9-fold, respectively. The curvature-positive events had significantly delayed curvature initiation relative to clathrin recruitment in flow-stimulated cells, highlighting a shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings indicate that clathrin dynamics and clathrin-coated vesicle formation can be modulated by the local physiological environment and represent an important regulatory mechanism.

4.
Cell Adh Migr ; 18(1): 1-13, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38566311

RESUMEN

Desmosomes are intercellular junctions that regulate mechanical integrity in epithelia and cardiac muscle. Dynamic desmosome remodeling is essential for wound healing and development, yet the mechanisms governing junction assembly remain elusive. While we and others have shown that cadherin ectodomains are highly organized, how this ordered architecture emerges during assembly is unknown. Using fluorescence polarization microscopy, we show that desmoglein 2 (Dsg2) ectodomain order gradually increases during 8 h of assembly, coinciding with increasing adhesive strength. In a scratch wound assay, we observed a similar increase in order in desmosomes assembling at the leading edge of migratory cells. Together, our findings indicate that cadherin organization is a hallmark of desmosome maturity and may play a role in conferring adhesive strength.


Asunto(s)
Desmogleína 2 , Desmosomas , Cadherinas , Uniones Intercelulares , Adhesión Celular
5.
bioRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38260513

RESUMEN

Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses. Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-mediated endocytosis (CME) in non-ECs cells. How ECs overcome such unfavorable, from biophysical perspective, conditions and maintain CME remains elusive. Previously, we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show that endocytic dynamics are similar between statically cultured human umbilical vein endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here we asked whether biophysical stresses generated by blood flow could favor one mechanism of clathrin-coated vesicle formation to overcome environment present in vasculature. We used our data processing platform - DrSTAR - to examine if clathrin dynamics are altered in HUVECs grown under fluidic sheer stress (FSS). Surprisingly, we found that FSS led to an increase in clathrin dynamics. In HUVECs grown under FSS we observed a 2.3-fold increase in clathrin-coated vesicle formation and a 1.9-fold increase in non-productive flat clathrin lattices compared to cells grown in static conditions. The curvature-positive events had significantly delayed curvature initiation in flow-stimulated cells, highlighting a shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings indicate that clathrin dynamics and CCV formation can be modulated by the local physiological environment and represents an important regulatory mechanism.

6.
J Biol Chem ; 299(10): 105217, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37660914

RESUMEN

Aberrant glycosylation is a hallmark of a cancer cell. One prevalent alteration is an enrichment in α2,6-linked sialylation of N-glycosylated proteins, a modification directed by the ST6GAL1 sialyltransferase. ST6GAL1 is upregulated in many malignancies including ovarian cancer. Prior studies have shown that the addition of α2,6 sialic acid to the epidermal growth factor receptor (EGFR) activates this receptor, although the mechanism was largely unknown. To investigate the role of ST6GAL1 in EGFR activation, ST6GAL1 was overexpressed in the OV4 ovarian cancer line, which lacks endogenous ST6GAL1, or knocked-down in the OVCAR-3 and OVCAR-5 ovarian cancer lines, which have robust ST6GAL1 expression. Cells with high expression of ST6GAL1 displayed increased activation of EGFR and its downstream signaling targets, AKT and NFκB. Using biochemical and microscopy approaches, including total internal reflection fluorescence microscopy, we determined that the α2,6 sialylation of EGFR promoted its dimerization and higher order oligomerization. Additionally, ST6GAL1 activity was found to modulate EGFR trafficking dynamics following EGF-induced receptor activation. Specifically, EGFR sialylation enhanced receptor recycling to the cell surface following activation while simultaneously inhibiting lysosomal degradation. 3D widefield deconvolution microscopy confirmed that in cells with high ST6GAL1 expression, EGFR exhibited greater colocalization with Rab11 recycling endosomes and reduced colocalization with LAMP1-positive lysosomes. Collectively, our findings highlight a novel mechanism by which α2,6 sialylation promotes EGFR signaling by facilitating receptor oligomerization and recycling.


Asunto(s)
Receptores ErbB , beta-D-Galactósido alfa 2-6-Sialiltransferasa , Humanos , beta-D-Galactósido alfa 2-6-Sialiltransferasa/genética , beta-D-Galactósido alfa 2-6-Sialiltransferasa/metabolismo , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Ováricas/fisiopatología , Transducción de Señal , Transporte de Proteínas/genética , Unión Proteica
7.
bioRxiv ; 2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37398202

RESUMEN

Aberrant glycosylation is a hallmark of a cancer cell. One prevalent alteration is an enrichment in α2,6-linked sialylation of N-glycosylated proteins, a modification directed by the ST6GAL1 sialyltransferase. ST6GAL1 is upregulated in many malignancies including ovarian cancer. Prior studies have shown that the addition of α2,6 sialic acid to the Epidermal Growth Factor Receptor (EGFR) activates this receptor, although the mechanism was largely unknown. To investigate the role of ST6GAL1 in EGFR activation, ST6GAL1 was overexpressed in the OV4 ovarian cancer line, which lacks endogenous ST6GAL1, or knocked down in the OVCAR-3 and OVCAR-5 ovarian cancer lines, which have robust ST6GAL1 expression. Cells with high expression of ST6GAL1 displayed increased activation of EGFR and its downstream signaling targets, AKT and NFκB. Using biochemical and microscopy approaches, including Total Internal Reflection Fluorescence (TIRF) microscopy, we determined that the α2,6 sialylation of EGFR promoted its dimerization and higher order oligomerization. Additionally, ST6GAL1 activity was found to modulate EGFR trafficking dynamics following EGF-induced receptor activation. Specifically, EGFR sialylation enhanced receptor recycling to the cell surface following activation while simultaneously inhibiting lysosomal degradation. 3D widefield deconvolution microscopy confirmed that in cells with high ST6GAL1 expression, EGFR exhibited greater co-localization with Rab11 recycling endosomes and reduced co-localization with LAMP1-positive lysosomes. Collectively, our findings highlight a novel mechanism by which α2,6 sialylation promotes EGFR signaling by facilitating receptor oligomerization and recycling.

8.
Biophys J ; 122(4): 595-602, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36659851

RESUMEN

Protein interactions with the plasma membrane mediate processes critical for cell viability such as migration and endocytosis, yet our understanding of how recruitment of key proteins correlates with their ability to sense or induce energetically unfavorable plasma membrane shapes remains limited. Simultaneous two-wavelength axial ratiometry (STAR) microscopy provides millisecond time resolution and nanometer axial resolution of protein dynamics at the basal plasma membrane. However, STAR microscopy requires extensive and time-consuming quantitative data processing to access axial (Δz) information. Therefore, addressing questions about the influence of biological and biophysical factors on the interaction between the plasma membrane and protein of interest remains challenging. Here, we overcome the limitations in STAR data processing and present dynamic reference STAR (DrSTAR): a user-friendly, automated, open-source MATLAB-based package. DrSTAR enables processing multiple experimental conditions and biological replicates, employs a novel local background referencing algorithm, and accelerates processing time to facilitate broad adaptation of STAR for studying nanometer axial changes in protein distribution.


Asunto(s)
Microscopía , Proteínas , Algoritmos , Membrana Celular
9.
Int J Biochem Cell Biol ; 156: 106349, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566777

RESUMEN

Understanding of how energetically unfavorable plasma membrane shapes form, especially in the context of dynamic processes in living cells or tissues like clathrin-mediated endocytosis is in its infancy. Even though cutting-edge microscopy techniques that bridge this gap exist, they remain underused in biomedical sciences. Here, we demystify the perceived complexity of these advanced microscopy approaches and demonstrate their power in resolving nanometer axial dynamics in living cells. Total internal reflection fluorescence microscopy based approaches are the main focus of this review. We present clathrin-mediated endocytosis as a model system when describing the principles, data acquisition requirements, data interpretation strategies, and limitations of the described techniques. We hope this standardized description will bring the approaches for measuring nanoscale axial dynamics closer to the potential users and help in choosing the right approach to the right question.


Asunto(s)
Clatrina , Endocitosis , Microscopía Fluorescente/métodos , Membrana Celular/metabolismo , Clatrina/metabolismo
10.
Biophys J ; 121(22): 4325-4341, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36225113

RESUMEN

Desmosomes are large, macromolecular protein assemblies that mechanically couple the intermediate filament cytoskeleton to sites of cadherin-mediated cell adhesion, thereby providing structural integrity to tissues that routinely experience large forces. Proper desmosomal adhesion is necessary for the normal development and maintenance of vertebrate tissues, such as epithelia and cardiac muscle, while dysfunction can lead to severe disease of the heart and skin. Therefore, it is important to understand the relationship between desmosomal adhesion and the architecture of the molecules that form the adhesive interface, the desmosomal cadherins (DCs). However, desmosomes are embedded in two plasma membranes and are linked to the cytoskeletal networks of two cells, imposing extreme difficulty on traditional structural studies of DC architecture, which have yielded conflicting results. Consequently, the relationship between DC architecture and adhesive function remains unclear. To overcome these challenges, we utilized excitation-resolved fluorescence polarization microscopy to quantify the orientational order of the extracellular and intracellular domains of three DC isoforms: desmoglein 2, desmocollin 2, and desmoglein 3. We found that DC ectodomains were significantly more ordered than their cytoplasmic counterparts, indicating a drastic difference in DC architecture between opposing sides of the plasma membrane. This difference was conserved among all DCs tested, suggesting that it may be an important feature of desmosomal architecture. Moreover, our findings suggest that the organization of DC ectodomains is predominantly the result of extracellular adhesive interactions. We employed azimuthal orientation mapping to show that DC ectodomains are arranged with rotational symmetry about the membrane normal. Finally, we performed a series of mathematical simulations to test the feasibility of a recently proposed antiparallel arrangement of DC ectodomains, finding that it is supported by our experimental data. Importantly, the strategies employed here have the potential to elucidate molecular mechanisms for diseases that result from defective desmosome architecture.


Asunto(s)
Proteínas del Citoesqueleto , Desmosomas , Desmosomas/metabolismo , Proteínas del Citoesqueleto/química , Cadherinas/metabolismo , Adhesión Celular/fisiología , Cadherinas Desmosómicas/análisis , Cadherinas Desmosómicas/metabolismo
11.
Nat Commun ; 13(1): 1732, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365614

RESUMEN

Clathrin polymerization and changes in plasma membrane architecture are necessary steps in forming vesicles to internalize cargo during clathrin-mediated endocytosis (CME). Simultaneous analysis of clathrin dynamics and membrane structure is challenging due to the limited axial resolution of fluorescence microscopes and the heterogeneity of CME. This has fueled conflicting models of vesicle assembly and obscured the roles of flat clathrin assemblies. Here, using Simultaneous Two-wavelength Axial Ratiometry (STAR) microscopy, we bridge this critical knowledge gap by quantifying the nanoscale dynamics of clathrin-coat shape change during vesicle assembly. We find that de novo clathrin accumulations generate both flat and curved structures. High-throughput analysis reveals that the initiation of vesicle curvature does not directly correlate with clathrin accumulation. We show clathrin accumulation is preferentially simultaneous with curvature formation at shorter-lived clathrin-coated vesicles (CCVs), but favors a flat-to-curved transition at longer-lived CCVs. The broad spectrum of curvature initiation dynamics revealed by STAR microscopy supports multiple productive mechanisms of vesicle formation and advocates for the flexible model of CME.


Asunto(s)
Clatrina , Endocitosis , Membrana Celular/metabolismo , Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Microscopía Fluorescente
12.
J Vis Exp ; (180)2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35225264

RESUMEN

Multicellular organisms rely on interactions between membrane receptors and cognate ligands in the surrounding extracellular matrix (ECM) to orchestrate multiple functions, including adhesion, proliferation, migration, and differentiation. Mechanical forces can be transmitted from the cell via the adhesion receptor integrin to ligands in the ECM. The amount and spatial organization of these cell-generated forces can be modulated by growth factor receptors, including epidermal growth factor receptor (EGFR). The tools currently available to quantify crosstalk-mediated changes in cell mechanics and relate them to focal adhesions, cellular morphology, and signaling are limited. DNA-based molecular force sensors known as tension gauge tethers (TGTs) have been employed to quantify these changes. TGT probes are unique in their ability to both modulate the underlying force threshold and report piconewton scale receptor forces across the entire adherent cell surface at diffraction-limited spatial resolution. The TGT probes used here rely on the irreversible dissociation of a DNA duplex by receptor-ligand forces that generate a fluorescent signal. This allows quantification of the cumulative integrin tension (force history) of the cell. This article describes a protocol employing TGTs to study the impact of EGFR on integrin mechanics and adhesion formation. The assembly of the TGT mechanical sensing platform is systematically detailed and the procedure to image forces, focal adhesions, and cell spreading is outlined. Overall, the ability to modulate the underlying force threshold of the probe, the adhesion ligand, and the type and concentration of growth factor employed for stimulation make this a robust platform for studying the interplay of diverse membrane receptors in regulating integrin-mediated forces.


Asunto(s)
Adhesiones Focales , Integrinas , Adhesión Celular , Membrana Celular/metabolismo , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ligandos
13.
Methods Mol Biol ; 2438: 45-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147934

RESUMEN

The establishment of apicobasal or planar cell polarity involves many events that occur at or near the plasma membrane including focal adhesion dynamics, endocytosis, exocytosis, and cytoskeletal reorganization. It is desirable to visualize these events without interference from other regions deeper within the cell. Total internal reflection fluorescence (TIRF) microscopy utilizes an elegant optical sectioning approach to visualize fluorophores near the sample-coverslip interface. TIRF provides high-contrast fluorescence images with limited background and virtually no out-of-focus light, ideal for visualizing and tracking dynamics near the plasma membrane. In this chapter, we present a general experimental and analysis TIRF pipeline for studying cell surface receptor endocytosis. The approach presented can be easily applied to study other dynamic biological processes at or near the plasma membrane using TIRF microscopy.


Asunto(s)
Endocitosis , Colorantes Fluorescentes , Membrana Celular , Exocitosis , Microscopía Fluorescente/métodos
14.
J Biol Chem ; 298(4): 101726, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35157848

RESUMEN

Heterogeneity within the glycocalyx influences cell adhesion mechanics and signaling. However, the role of specific glycosylation subtypes in influencing cell mechanics via alterations of receptor function remains unexplored. It has been shown that the addition of sialic acid to terminal glycans impacts growth, development, and cancer progression. In addition, the sialyltransferase ST6Gal-I promotes epidermal growth factor receptor (EGFR) activity, and we have shown EGFR is an 'allosteric mechano-organizer' of integrin tension. Here, we investigated the impact of ST6Gal-I on cell mechanics. Using DNA-based tension gauge tether probes of variable thresholds, we found that high ST6Gal-I activity promotes increased integrin forces and spreading in Cos-7 and OVCAR3, OVCAR5, and OV4 cancer cells. Further, employing inhibitors and function-blocking antibodies against ß1, ß3, and ß5 integrins and ST6Gal-I targets EGFR, tumor necrosis factor receptor, and Fas cell surface death receptor, we validated that the observed phenotypes are EGFR-specific. We found that while tension, contractility, and adhesion are extracellular-signal-regulated kinase pathway-dependent, spreading, proliferation, and invasion are phosphoinositide 3-kinase-Akt serine/threonine kinase dependent. Using total internal reflection fluorescence microscopy and flow cytometry, we also show that high ST6Gal-I activity leads to sustained EGFR membrane retention, making it a key regulator of cell mechanics. Our findings suggest a novel sialylation-dependent mechanism orchestrating cellular mechanics and enhancing cell motility via EGFR signaling.


Asunto(s)
Neoplasias Ováricas , Sialiltransferasas , Línea Celular Tumoral , Movimiento Celular , Receptores ErbB/metabolismo , Femenino , Humanos , Integrinas/metabolismo , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/fisiopatología , Fosfatidilinositol 3-Quinasas/metabolismo , Sialiltransferasas/metabolismo , beta-D-Galactósido alfa 2-6-Sialiltransferasa
15.
Tissue Barriers ; 10(4): 2017225, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34983311

RESUMEN

Desmosomes are macromolecular cell-cell junctions critical for maintaining adhesion and resisting mechanical stress in epithelial tissue. Desmosome assembly and the relationship between maturity and molecular architecture are not well understood. To address this, we employed a calcium switch assay to synchronize assembly followed by quantification of desmosome nanoscale organization using direct Stochastic Optical Reconstruction Microscopy (dSTORM). We found that the organization of the desmoplakin rod/C-terminal junction changed over the course of maturation, as indicated by a decrease in the plaque-to-plaque distance, while the plaque length increased. In contrast, the desmoplakin N-terminal domain and plakoglobin organization (plaque-to-plaque distance) were constant throughout maturation. This structural rearrangement of desmoplakin was concurrent with desmosome maturation measured by E-cadherin exclusion and increased adhesive strength. Using two-color dSTORM, we showed that while the number of individual E-cadherin containing junctions went down with the increasing time in high Ca2+, they maintained a wider desmoplakin rod/C-terminal plaque-to-plaque distance. This indicates that the maturation state of individual desmosomes can be identified by their architectural organization. We confirmed these architectural changes in another model of desmosome assembly, cell migration. Desmosomes in migrating cells, closest to the scratch where they are assembling, were shorter, E-cadherin enriched, and had wider desmoplakin rod/C-terminal plaque-to-plaque distances compared to desmosomes away from the wound edge. Key results were demonstrated in three cell lines representing simple, transitional, and stratified epithelia. Together, these data suggest that there is a set of architectural programs for desmosome maturation, and we hypothesize that desmoplakin architecture may be a contributing mechanism to regulating adhesive strength.


Asunto(s)
Calcio , Desmosomas , Desmosomas/química , Desmosomas/metabolismo , gamma Catenina/análisis , gamma Catenina/metabolismo , Desmoplaquinas/análisis , Desmoplaquinas/metabolismo , Calcio/análisis , Calcio/metabolismo , Cadherinas/metabolismo
17.
Nat Commun ; 12(1): 4693, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344862

RESUMEN

Many cellular processes, including cell division, development, and cell migration require spatially and temporally coordinated forces transduced by cell-surface receptors. Nucleic acid-based molecular tension probes allow one to visualize the piconewton (pN) forces applied by these receptors. Building on this technology, we recently developed molecular force microscopy (MFM) which uses fluorescence polarization to map receptor force orientation with diffraction-limited resolution (~250 nm). Here, we show that structured illumination microscopy (SIM), a super-resolution technique, can be used to perform super-resolution MFM. Using SIM-MFM, we generate the highest resolution maps of both the magnitude and orientation of the pN traction forces applied by cells. We apply SIM-MFM to map platelet and fibroblast integrin forces, as well as T cell receptor forces. Using SIM-MFM, we show that platelet traction force alignment occurs on a longer timescale than adhesion. Importantly, SIM-MFM can be implemented on any standard SIM microscope without hardware modifications.


Asunto(s)
Microscopía Fluorescente/métodos , Receptores de Superficie Celular/metabolismo , Animales , Fenómenos Biomecánicos , Plaquetas/metabolismo , Linfocitos T CD8-positivos , Colorantes Fluorescentes/metabolismo , Humanos , Integrinas/metabolismo , Ratones , Sondas Moleculares/metabolismo , Células 3T3 NIH , Paxillin/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Imagen de Lapso de Tiempo
18.
Lab Invest ; 101(11): 1439-1448, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34267320

RESUMEN

The nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20-30% decreased nucleolar abundance per cell and a 30-60% downregulation of RNA Pol I transcription activity, as well as a 50-70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.


Asunto(s)
Nucléolo Celular/efectos de los fármacos , Flavonoles/uso terapéutico , Neoplasias Pulmonares/prevención & control , ARN Polimerasa I/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Flavonas/farmacología , Flavonas/uso terapéutico , Flavonoles/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Neoplasias Pulmonares/secundario , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , ARN Ribosómico/biosíntesis
19.
Methods Mol Biol ; 2367: 305-315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33225407

RESUMEN

Desmosomes are cell-cell junctions responsible for mechanically integrating adjacent cells. Due to the small size of the junctions, their protein architecture cannot be elucidated using conventional fluorescence microscopy. Super-resolution microscopy techniques, including dSTORM, deliver higher-resolution images which can reveal the localization or arrangement of proteins within individual desmosomes. Herein we describe an imaging and analysis method to determine the nanoscale architecture of desmosomes using super-resolution dSTORM.


Asunto(s)
Desmosomas , Microscopía Fluorescente , Proteínas
20.
Nat Methods ; 17(10): 1018-1024, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32929270

RESUMEN

Despite the vital role of mechanical forces in biology, it still remains a challenge to image cellular force with sub-100-nm resolution. Here, we present tension points accumulation for imaging in nanoscale topography (tPAINT), integrating molecular tension probes with the DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) technique to map piconewton mechanical events with ~25-nm resolution. To perform live-cell dynamic tension imaging, we engineered reversible probes with a cryptic docking site revealed only when the probe experiences forces exceeding a defined mechanical threshold (~7-21 pN). Additionally, we report a second type of irreversible tPAINT probe that exposes its cryptic docking site permanently and thus integrates force history over time, offering improved spatial resolution in exchange for temporal dynamics. We applied both types of tPAINT probes to map integrin receptor forces in live human platelets and mouse embryonic fibroblasts. Importantly, tPAINT revealed a link between platelet forces at the leading edge of cells and the dynamic actin-rich ring nucleated by the Arp2/3 complex.


Asunto(s)
Mecanotransducción Celular , Nanotecnología/métodos , Análisis de la Célula Individual , Animales , Fenómenos Biomecánicos , Plaquetas/fisiología , Fibroblastos/fisiología , Humanos , Ratones , Nanotecnología/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...