Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4319, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773080

RESUMEN

The landscape of non-coding mutations in cancer progression and immune evasion is largely unexplored. Here, we identify transcrptome-wide somatic and germline 3' untranslated region (3'-UTR) variants from 375 gastric cancer patients from The Cancer Genome Atlas. By performing gene expression quantitative trait loci (eQTL) and immune landscape QTL (ilQTL) analysis, we discover 3'-UTR variants with cis effects on expression and immune landscape phenotypes, such as immune cell infiltration and T cell receptor diversity. Using a massively parallel reporter assay, we distinguish between causal and correlative effects of 3'-UTR eQTLs in immune-related genes. Our approach identifies numerous 3'-UTR eQTLs and ilQTLs, providing a unique resource for the identification of immunotherapeutic targets and biomarkers. A prioritized ilQTL variant signature predicts response to immunotherapy better than standard-of-care PD-L1 expression in independent patient cohorts, showcasing the untapped potential of non-coding mutations in cancer.


Asunto(s)
Regiones no Traducidas 3' , Sitios de Carácter Cuantitativo , Neoplasias Gástricas , Escape del Tumor , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Escape del Tumor/genética , Regiones no Traducidas 3'/genética , Regulación Neoplásica de la Expresión Génica , Mutación , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Inmunoterapia/métodos , Femenino , Masculino
2.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38617209

RESUMEN

Most human Transcription factors (TFs) genes encode multiple protein isoforms differing in DNA binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators", both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.

3.
Cell Genom ; 3(7): 100330, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37492106

RESUMEN

High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of regulatory variants at BP loci (i.e., ULK4, MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factor motifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring, we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9, SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a better understanding of BP gene regulation.

4.
PLoS Biol ; 21(4): e3002038, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104245

RESUMEN

While screening and early detection have reduced mortality from prostate cancer, castration-resistant disease (CRPC) is still incurable. Here, we report that combined EZH2/HDAC inhibitors potently kill CRPCs and cause dramatic tumor regression in aggressive human and mouse CRPC models. Notably, EZH2 and HDAC both transmit transcriptional repressive signals: regulating histone H3 methylation and histone deacetylation, respectively. Accordingly, we show that suppression of both EZH2 and HDAC are required to derepress/induce a subset of EZH2 targets, by promoting the sequential demethylation and acetylation of histone H3. Moreover, we find that the induction of one of these targets, ATF3, which is a broad stress response gene, is critical for the therapeutic response. Importantly, in human tumors, low ATF3 levels are associated with decreased survival. Moreover, EZH2- and ATF3-mediated transcriptional programs inversely correlate and are most highly/lowly expressed in advanced disease. Together, these studies identify a promising therapeutic strategy for CRPC and suggest that these two major epigenetic regulators buffer prostate cancers from a lethal response to cellular stresses, thereby conferring a tractable therapeutic vulnerability.


Asunto(s)
Histonas , Neoplasias de la Próstata Resistentes a la Castración , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Histona Desacetilasas
5.
NPJ Genom Med ; 7(1): 18, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288587

RESUMEN

Cardiomyopathy (CMP) is a heritable disorder. Over 50% of cases are gene-elusive on clinical gene panel testing. The contribution of variants in non-coding DNA elements that result in cryptic splicing and regulate gene expression has not been explored. We analyzed whole-genome sequencing (WGS) data in a discovery cohort of 209 pediatric CMP patients and 1953 independent replication genomes and exomes. We searched for protein-coding variants, and non-coding variants predicted to affect the function or expression of genes. Thirty-nine percent of cases harbored pathogenic coding variants in known CMP genes, and 5% harbored high-risk loss-of-function (LoF) variants in additional candidate CMP genes. Fifteen percent harbored high-risk regulatory variants in promoters and enhancers of CMP genes (odds ratio 2.25, p = 6.70 × 10-7 versus controls). Genes involved in α-dystroglycan glycosylation (FKTN, DTNA) and desmosomal signaling (DSC2, DSG2) were most highly enriched for regulatory variants (odds ratio 6.7-58.1). Functional effects were confirmed in patient myocardium and reporter assays in human cardiomyocytes, and in zebrafish CRISPR knockouts. We provide strong evidence for the genomic contribution of functionally active variants in new genes and in regulatory elements of known CMP genes to early onset CMP.

6.
PLoS One ; 16(11): e0252848, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34731163

RESUMEN

Although many long non-coding RNAs (lncRNAs) exhibit lineage-specific expression, the vast majority remain functionally uncharacterized in the context of development. Here, we report the first described human embryonic stem cell (hESC) lines to repress (CRISPRi) or activate (CRISPRa) transcription during differentiation into all three germ layers, facilitating the modulation of lncRNA expression during early development. We performed an unbiased, genome-wide CRISPRi screen targeting thousands of lncRNA loci expressed during endoderm differentiation. While dozens of lncRNA loci were required for proper differentiation, most differentially expressed lncRNAs were not, supporting the necessity for functional screening instead of relying solely on gene expression analyses. In parallel, we developed a clustering approach to infer mechanisms of action of lncRNA hits based on a variety of genomic features. We subsequently identified and validated FOXD3-AS1 as a functional lncRNA essential for pluripotency and differentiation. Taken together, the cell lines and methodology described herein can be adapted to discover and characterize novel regulators of differentiation into any lineage.


Asunto(s)
Diferenciación Celular/genética , Sistemas CRISPR-Cas , Factores de Transcripción Forkhead/genética , Humanos , Interferencia de ARN , ARN Largo no Codificante
7.
Genome Biol ; 21(1): 210, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32819422

RESUMEN

BACKGROUND: Gene expression differences between species are driven by both cis and trans effects. Whereas cis effects are caused by genetic variants located on the same DNA molecule as the target gene, trans effects are due to genetic variants that affect diffusible elements. Previous studies have mostly assessed the impact of cis and trans effects at the gene level. However, how cis and trans effects differentially impact regulatory elements such as enhancers and promoters remains poorly understood. Here, we use massively parallel reporter assays to directly measure the transcriptional outputs of thousands of individual regulatory elements in embryonic stem cells and measure cis and trans effects between human and mouse. RESULTS: Our approach reveals that cis effects are widespread across transcribed regulatory elements, and the strongest cis effects are associated with the disruption of motifs recognized by strong transcriptional activators. Conversely, we find that trans effects are rare but stronger in enhancers than promoters and are associated with a subset of transcription factors that are differentially expressed between human and mouse. While we find that cis-trans compensation is common within promoters, we do not see evidence of widespread cis-trans compensation at enhancers. Cis-trans compensation is inversely correlated with enhancer redundancy, suggesting that such compensation may often occur across multiple enhancers. CONCLUSIONS: Our results highlight differences in the mode of evolution between promoters and enhancers in complex mammalian genomes and indicate that studying the evolution of individual regulatory elements is pivotal to understand the tempo and mode of gene expression evolution.


Asunto(s)
Elementos de Facilitación Genéticos , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas , Animales , Secuencia Conservada , Genes Reporteros , Humanos , Ratones , Elementos Reguladores de la Transcripción , Factores de Transcripción
8.
EMBO Mol Med ; 12(5): e12112, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32239644

RESUMEN

Deriving mechanisms of immune-mediated disease from GWAS data remains a formidable challenge, with attempts to identify causal variants being frequently hampered by strong linkage disequilibrium. To determine whether causal variants could be identified from their functional effects, we adapted a massively parallel reporter assay for use in primary CD4 T cells, the cell type whose regulatory DNA is most enriched for immune-mediated disease SNPs. This enabled the effects of candidate SNPs to be examined in a relevant cellular context and generated testable hypotheses into disease mechanisms. To illustrate the power of this approach, we investigated a locus that has been linked to six immune-mediated diseases but cannot be fine-mapped. By studying the lead expression-modulating SNP, we uncovered an NF-κB-driven regulatory circuit which constrains T-cell activation through the dynamic formation of a super-enhancer that upregulates TNFAIP3 (A20), a key NF-κB inhibitor. In activated T cells, this feedback circuit is disrupted-and super-enhancer formation prevented-by the risk variant at the lead SNP, leading to unrestrained T-cell activation via a molecular mechanism that appears to broadly predispose to human autoimmunity.


Asunto(s)
Linfocitos T CD4-Positivos , FN-kappa B , Autoinmunidad , Humanos , Polimorfismo de Nucleótido Simple
9.
Genome Res ; 29(3): 344-355, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30683753

RESUMEN

Transcription initiates at both coding and noncoding genomic elements, including mRNA and long noncoding RNA (lncRNA) core promoters and enhancer RNAs (eRNAs). However, each class has a different expression profile with lncRNAs and eRNAs being the most tissue specific. How these complex differences in expression profiles and tissue specificities are encoded in a single DNA sequence remains unresolved. Here, we address this question using computational approaches and massively parallel reporter assays (MPRA) surveying hundreds of promoters and enhancers. We find that both divergent lncRNA and mRNA core promoters have higher capacities to drive transcription than nondivergent lncRNA and mRNA core promoters, respectively. Conversely, intergenic lncRNAs (lincRNAs) and eRNAs have lower capacities to drive transcription and are more tissue specific than divergent genes. This higher tissue specificity is strongly associated with having less complex transcription factor (TF) motif profiles at the core promoter. We experimentally validated these findings by testing both engineered single-nucleotide deletions and human single-nucleotide polymorphisms (SNPs) in MPRA. In both cases, we observe that single nucleotides associated with many motifs are important drivers of promoter activity. Thus, we suggest that high TF motif density serves as a robust mechanism to increase promoter activity at the expense of tissue specificity. Moreover, we find that 22% of common SNPs in core promoter regions have significant regulatory effects. Collectively, our findings show that high TF motif density provides redundancy and increases promoter activity at the expense of tissue specificity, suggesting that specificity of expression may be regulated by simplicity of motif usage.


Asunto(s)
Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Genoma Humano , Humanos , Especificidad de Órganos , Polimorfismo de Nucleótido Simple
10.
Genome Res ; 27(1): 27-37, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27927715

RESUMEN

While long intergenic noncoding RNAs (lincRNAs) and mRNAs share similar biogenesis pathways, these transcript classes differ in many regards. LincRNAs are less evolutionarily conserved, less abundant, and more tissue-specific, suggesting that their pre- and post-transcriptional regulation is different from that of mRNAs. Here, we perform an in-depth characterization of the features that contribute to lincRNA regulation in multiple human cell lines. We find that lincRNA promoters are depleted of transcription factor (TF) binding sites, yet enriched for some specific factors such as GATA and FOS relative to mRNA promoters. Surprisingly, we find that H3K9me3-a histone modification typically associated with transcriptional repression-is more enriched at the promoters of active lincRNA loci than at those of active mRNAs. Moreover, H3K9me3-marked lincRNA genes are more tissue-specific. The most discriminant differences between lincRNAs and mRNAs involve splicing. LincRNAs are less efficiently spliced, which cannot be explained by differences in U1 binding or the density of exonic splicing enhancers but may be partially attributed to lower U2AF65 binding and weaker splicing-related motifs. Conversely, the stability of lincRNAs and mRNAs is similar, differing only with regard to the location of stabilizing protein binding sites. Finally, we find that certain transcriptional properties are correlated with higher evolutionary conservation in both DNA and RNA motifs and are enriched in lincRNAs that have been functionally characterized.


Asunto(s)
Cromatina/genética , Evolución Molecular , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Sitios de Unión , Secuencia Conservada/genética , Exones/genética , Regulación de la Expresión Génica/genética , Humanos , Motivos de Nucleótidos/genética , Especificidad de Órganos/genética , Regiones Promotoras Genéticas , Empalme del ARN/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , Factor de Empalme U2AF/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA