Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38328254

RESUMEN

Here, we describe a novel pan-RAS inhibitor, ADT-007, that potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme. RAS WT cancer cells with activated RAS from upstream mutations were equally sensitive. Conversely, cells from normal tissues or RAS WT cancer cells harboring downstream BRAF mutations were insensitive. Insensitivity to ADT-007 was attributed to low activated RAS levels and metabolic deactivation by UDP-glucuronosyltransferases expressed in normal cells but repressed in RAS mutant cancer cells. Cellular, biochemical, and biophysical experiments show ADT-007 binds nucleotide-free RAS to block GTP activation of RAS and MAPK/AKT signaling. Local administration of ADT-007 strongly inhibited tumor growth in syngeneic immune-competent and xenogeneic immune-deficient mouse models of colorectal and pancreatic cancer while activating innate and adaptive immunity in the tumor immune microenvironment. Oral administration of ADT-007 prodrug inhibited tumor growth, supporting further development of this novel class of pan-RAS inhibitors for treating RAS-driven cancers. SIGNIFICANCE: ADT-007 is a 1 st -in-class pan-RAS inhibitor with ultra-high potency and unique selectivity for cancer cells with mutant or activated RAS capable of circumventing resistance and activating antitumor immunity. Further development of ADT-007 analogs or prodrugs with oral bioavailability as a generalizable monotherapy or combined with immunotherapy is warranted.

2.
MedComm (2020) ; 1(2): 121-128, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33073260

RESUMEN

Approximately 30% of human cancers harbor a gain-in-function mutation in the RAS gene, resulting in constitutive activation of the RAS protein to stimulate downstream signaling, including the RAS-mitogen activated protein kinase pathway that drives cancer cells to proliferate and metastasize. RAS-driven oncogenesis also promotes immune evasion by increasing the expression of programmed cell death ligand-1, reducing the expression of major histocompatibility complex molecules that present antigens to T-lymphocytes and altering the expression of cytokines that promote the differentiation and accumulation of immune suppressive cell types such as myeloid-derived suppressor cells, regulatory T-cells, and cancer-associated fibroblasts. Together, these changes lead to an immune suppressive tumor microenvironment that impedes T-cell activation and infiltration and promotes the outgrowth and metastasis of tumor cells. As a result, despite the growing success of checkpoint immunotherapy, many patients with RAS-driven tumors experience resistance to therapy and poor clinical outcomes. Therefore, RAS inhibitors in development have the potential to weaken cancer cell immune evasion and enhance the antitumor immune response to improve survival of patients with RAS-driven cancers. This review highlights the potential of RAS inhibitors to enhance or broaden the anti-cancer activity of currently available checkpoint immunotherapy.

3.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878223

RESUMEN

Oncogenic mutations in RAS genes result in the elevation of cellular active RAS protein levels and increased signal propagation through downstream pathways that drive tumor cell proliferation and survival. These gain-of-function mutations drive over 30% of all human cancers, presenting promising therapeutic potential for RAS inhibitors. However, many have deemed RAS "undruggable" after nearly 40 years of failed drug discovery campaigns aimed at identifying a RAS inhibitor with clinical activity. Here we review RAS nucleotide cycling and the opportunities that RAS biochemistry presents for developing novel RAS inhibitory compounds. Additionally, compounds that have been identified to inhibit RAS by exploiting various aspects of RAS biology and biochemistry will be covered. Our current understanding of the biochemical properties of RAS, along with reports of direct-binding inhibitors, both provide insight on viable strategies for the discovery of novel clinical candidates with RAS inhibitory activity.


Asunto(s)
Neoplasias/genética , Neoplasias/metabolismo , Proteínas ras/genética , Animales , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...