Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Alzheimers Res Ther ; 16(1): 221, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39396028

RESUMEN

BACKGROUND: In Alzheimer's disease (AD), the associations between tau pathology and brain atrophy and cognitive decline are well established, but imperfect. We investigate whether cerebrospinal fluid (CSF) biomarkers of biological processes (vascular, synaptic, and axonal integrity, neuroinflammation, neurotrophic factors) explain the disconnection between tau pathology and brain atrophy (brain resilience), and tau pathology and cognitive decline (cognitive resilience). METHODS: We included 428 amyloid positive participants (134 cognitively unimpaired (CU), 128 with mild cognitive impairment (MCI), 166 with AD dementia) from the BioFINDER-2 study. At baseline, participants underwent tau positron emission tomography (tau-PET), magnetic resonance imaging (MRI), cognitive testing, and lumbar puncture. Longitudinal data were available for MRI (mean (standard deviation) follow-up 26.4 (10.7) months) and cognition (25.2 (11.4) months). We analysed 18 pre-selected CSF proteins, reflecting vascular, synaptic, and axonal integrity, neuroinflammation, and neurotrophic factors. Stratifying by cognitive status, we performed linear mixed-effects models with cortical thickness (brain resilience) and global cognition (cognitive resilience) as dependent variables to assess whether the CSF biomarkers interacted with tau-PET levels in its effect on cortical atrophy and cognitive decline. RESULTS: Regarding brain resilience, interaction effects were observed in AD dementia, with vascular integrity biomarkers (VEGF-A (ßinteraction = -0.009, pFDR = 0.047) and VEGF-B (ßinteraction = -0.010, pFDR = 0.037)) negatively moderating the association between tau-PET signal and atrophy. In MCI, higher NfL levels were associated with more longitudinal cortical atrophy (ß = -0.109, pFDR = 0.033) and lower baseline cortical thickness (ß = -0.708, pFDR = 0.033) controlling for tau-PET signal. Cognitive resilience analyses in CU revealed interactions with tau-PET signal for inflammatory (GFAP, IL-15; ßinteraction -0.073--0.069, pFDR 0.001-0.045), vascular (VEGF-A, VEGF-D, PGF; ßinteraction -0.099--0.063, pFDR < 0.001-0.046), synaptic (14-3-3ζ/δ; ßinteraction = -0.092, pFDR = 0.041), axonal (NfL; ßinteraction = -0.079, pFDR < 0.001), and neurotrophic (NGF; ßinteraction = 0.091, pFDR < 0.001) biomarkers. In MCI higher NfL levels (ßmain = -0.690, pFDR = 0.025) were associated with faster cognitive decline independent of tau-PET signal. CONCLUSIONS: Biomarkers of co-existing pathological processes, in particular vascular pathology and axonal degeneration, interact with levels of tau pathology on its association with the downstream effects of AD pathology (i.e. brain atrophy and cognitive decline). This indicates that vascular pathology and axonal degeneration could impact brain and cognitive resilience.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Disfunción Cognitiva , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/metabolismo , Masculino , Femenino , Anciano , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/metabolismo , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Biomarcadores/líquido cefalorraquídeo , Imagen por Resonancia Magnética , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Atrofia/patología , Persona de Mediana Edad , Estudios Longitudinales , Anciano de 80 o más Años
2.
Alzheimers Res Ther ; 16(1): 204, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285454

RESUMEN

BACKGROUND: The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfields and drivers of atrophy in amnestic EOAD is lacking. METHODS: BioFINDER-2 participants with memory impairment, abnormal amyloid-ß and tau-PET were included. Forty-one amnestic EOAD individuals ≤65 years and, as comparison, late-onset AD (aLOAD, ≥70 years, n = 154) and amyloid-ß-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. RESULTS: AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups: aLOAD showed thinner entorhinal cortices than aEOAD; aEOAD showed thinner parietal regions than aLOAD. aEOAD showed lower white matter hyperintensities than aLOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity were found. CONCLUSIONS: We found evidence for MTL atrophy in amnestic EOAD and overall similar levels to aLOAD of MTL tau pathology and co-pathologies.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Tomografía de Emisión de Positrones , Lóbulo Temporal , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Atrofia/patología , Masculino , Femenino , Anciano , Lóbulo Temporal/patología , Lóbulo Temporal/diagnóstico por imagen , Persona de Mediana Edad , Imagen por Resonancia Magnética , Proteínas tau/metabolismo , Edad de Inicio , Péptidos beta-Amiloides/metabolismo , Amnesia/patología , Amnesia/diagnóstico por imagen , Anciano de 80 o más Años
3.
Alzheimers Dement ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258841

RESUMEN

INTRODUCTION: We examined the relations of misfolded alpha synuclein (α-synuclein) with Alzheimer's disease (AD) biomarkers in two large independent cohorts. METHODS: We included Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably Two (BioFINDER-2) and Alzheimer's Disease Neuroimaging Initiative (ADNI) participants (n = 2315, cognitively unimpaired, mild cognitive impairment, AD dementia) who had cross-sectional cerebrospinal fluid (CSF) α-synuclein measurement from seed-amplification assay as well as cross-sectional and longitudinal amyloid beta (Aß) and tau levels (measured in CSF and/or by positron emission tomography). All analyses were adjusted for age, sex, and cognitive status. RESULTS: Across cohorts, the main biomarker associated with α-synuclein positivity at baseline was higher levels of Aß pathology (all p values ≤ 0.02), but not tau. Looking at longitudinal measures of AD biomarkers, α-synuclein -positive participants had a statistically significant faster increase of Aß load, although of modest magnitude (1.11 Centiloid/year, p = 0.02), compared to α-synuclein -negative participants in BioFINDER-2 but not in ADNI. DISCUSSION: We showed associations between concurrent misfolded α-synuclein and Aß levels, providing in vivo evidence of links between these two molecular disease pathways in humans. HIGHLIGHTS: Amyloid beta (Aß), but not tau, was associated with alpha-synuclein (α-synuclein) positivity. Such association was consistent across two cohorts, beyond the effect of age, sex, and cognitive status. α-synuclein-positive participants had a small, statistically significant faster increase in Aß positron emission tomography levels in one of the two cohorts.

4.
Cell Rep Med ; 5(9): 101735, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39293391

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the aggregation of ß-amyloid (Aß) and tau in the brain. Breakthroughs in disease-modifying treatments targeting Aß bring new hope for the management of AD. But to effectively modify and someday even prevent AD, a better understanding is needed of the biological mechanisms that underlie and link Aß and tau in AD. Developments of high-throughput omics, including genomics, proteomics, and transcriptomics, together with molecular imaging of Aß and tau with positron emission tomography (PET), allow us to discover and understand the biological pathways that regulate the aggregation and spread of Aß and tau in living humans. The field of integrated omics and PET studies of Aß and tau in AD is growing rapidly. We here provide an update of this field, both in terms of biological insights and in terms of future clinical implications of integrated omics-molecular imaging studies.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Genómica , Proteómica , Proteínas tau , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Proteómica/métodos , Genómica/métodos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Tomografía de Emisión de Positrones/métodos , Animales , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen Molecular/métodos
5.
Nat Commun ; 15(1): 8061, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277604

RESUMEN

Identifying concomitant Lewy body (LB) pathology through seed amplification assays (SAA) might enhance the diagnostic and prognostic work-up of Alzheimer's disease (AD) in clinical practice and trials. This study examined whether LB pathology exacerbates AD-related disease progression in 795 cognitively impaired individuals (Mild Cognitive Impairment and dementia) from the longitudinal multi-center observational ADNI cohort. Participants were on average 75 years of age (SD = 7.89), 40.8% were female, 184 (23.1%) had no biomarker evidence of AD/LB pathology, 39 (4.9%) had isolated LB pathology (AD-LB+), 395 (49.7%) had only AD pathology (AD+LB-), and 177 (22.3%) had both pathologies (AD+LB+). The AD+LB+ group showed worst baseline performance for most cognitive outcomes and compared to the AD+LB- group faster global cognitive decline and more cortical hypometabolism, particularly in posterior brain regions. Neuropathological examination (n = 61) showed high sensitivity (26/27, 96.3%) and specificity (27/28, 96.4%) of the SAA-test. We showed that co-existing LB-positivity exacerbates cognitive decline and cortical brain hypometabolism in AD. In vivo LB pathology detection could enhance prognostic evaluations in clinical practice and could have implications for clinical AD trial design.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Femenino , Masculino , Anciano , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Anciano de 80 o más Años , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Progresión de la Enfermedad , Biomarcadores/metabolismo , Tomografía de Emisión de Positrones , Estudios Longitudinales , Imagen por Resonancia Magnética
6.
Nat Neurosci ; 27(10): 1880-1891, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39187705

RESUMEN

Proteomics can shed light on the dynamic and multifaceted alterations in neurodegenerative disorders like Alzheimer's disease (AD). Combining radioligands measuring ß-amyloid (Aß) plaques and tau tangles with cerebrospinal fluid proteomics, we uncover molecular events mirroring different stages of AD pathology in living humans. We found 127 differentially abundant proteins (DAPs) across the AD spectrum. The strongest Aß-related proteins were mainly expressed in glial cells and included SMOC1 and ITGAM. A dozen proteins linked to ATP metabolism and preferentially expressed in neurons were independently associated with tau tangle load and tau accumulation. Only 20% of the DAPs were also altered in other neurodegenerative diseases, underscoring AD's distinct proteome. Two co-expression modules related, respectively, to protein metabolism and microglial immune response encompassed most DAPs, with opposing, staggered trajectories along the AD continuum. We unveil protein signatures associated with Aß and tau proteinopathy in vivo, offering insights into complex neural responses and potential biomarkers and therapeutics targeting different disease stages.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ovillos Neurofibrilares , Placa Amiloide , Proteómica , Proteínas tau , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Proteínas tau/metabolismo , Placa Amiloide/patología , Placa Amiloide/metabolismo , Proteómica/métodos , Femenino , Anciano , Masculino , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/metabolismo , Anciano de 80 o más Años , Proteoma/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Biomarcadores/metabolismo
7.
JAMA ; 332(15): 1245-1257, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39068545

RESUMEN

Importance: An accurate blood test for Alzheimer disease (AD) could streamline the diagnostic workup and treatment of AD. Objective: To prospectively evaluate a clinically available AD blood test in primary care and secondary care using predefined biomarker cutoff values. Design, Setting, and Participants: There were 1213 patients undergoing clinical evaluation due to cognitive symptoms who were examined between February 2020 and January 2024 in Sweden. The biomarker cutoff values had been established in an independent cohort and were applied to a primary care cohort (n = 307) and a secondary care cohort (n = 300); 1 plasma sample per patient was analyzed as part of a single batch for each cohort. The blood test was then evaluated prospectively in the primary care cohort (n = 208) and in the secondary care cohort (n = 398); 1 plasma sample per patient was sent for analysis within 2 weeks of collection. Exposure: Blood tests based on plasma analyses by mass spectrometry to determine the ratio of plasma phosphorylated tau 217 (p-tau217) to non-p-tau217 (expressed as percentage of p-tau217) alone and when combined with the amyloid-ß 42 and amyloid-ß 40 (Aß42:Aß40) plasma ratio (the amyloid probability score 2 [APS2]). Main Outcomes and Measures: The primary outcome was AD pathology (determined by abnormal cerebrospinal fluid Aß42:Aß40 ratio and p-tau217). The secondary outcome was clinical AD. The positive predictive value (PPV), negative predictive value (NPV), diagnostic accuracy, and area under the curve (AUC) values were calculated. Results: The mean age was 74.2 years (SD, 8.3 years), 48% were women, 23% had subjective cognitive decline, 44% had mild cognitive impairment, and 33% had dementia. In both the primary care and secondary care assessments, 50% of patients had AD pathology. When the plasma samples were analyzed in a single batch in the primary care cohort, the AUC was 0.97 (95% CI, 0.95-0.99) when the APS2 was used, the PPV was 91% (95% CI, 87%-96%), and the NPV was 92% (95% CI, 87%-96%); in the secondary care cohort, the AUC was 0.96 (95% CI, 0.94-0.98) when the APS2 was used, the PPV was 88% (95% CI, 83%-93%), and the NPV was 87% (95% CI, 82%-93%). When the plasma samples were analyzed prospectively (biweekly) in the primary care cohort, the AUC was 0.96 (95% CI, 0.94-0.98) when the APS2 was used, the PPV was 88% (95% CI, 81%-94%), and the NPV was 90% (95% CI, 84%-96%); in the secondary care cohort, the AUC was 0.97 (95% CI, 0.95-0.98) when the APS2 was used, the PPV was 91% (95% CI, 87%-95%), and the NPV was 91% (95% CI, 87%-95%). The diagnostic accuracy was high in the 4 cohorts (range, 88%-92%). Primary care physicians had a diagnostic accuracy of 61% (95% CI, 53%-69%) for identifying clinical AD after clinical examination, cognitive testing, and a computed tomographic scan vs 91% (95% CI, 86%-96%) using the APS2. Dementia specialists had a diagnostic accuracy of 73% (95% CI, 68%-79%) vs 91% (95% CI, 88%-95%) using the APS2. In the overall population, the diagnostic accuracy using the APS2 (90% [95% CI, 88%-92%]) was not different from the diagnostic accuracy using the percentage of p-tau217 alone (90% [95% CI, 88%-91%]). Conclusions and Relevance: The APS2 and percentage of p-tau217 alone had high diagnostic accuracy for identifying AD among individuals with cognitive symptoms in primary and secondary care using predefined cutoff values. Future studies should evaluate how the use of blood tests for these biomarkers influences clinical care.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Fragmentos de Péptidos , Atención Primaria de Salud , Atención Secundaria de Salud , Proteínas tau , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/sangre , Biomarcadores/sangre , Femenino , Proteínas tau/sangre , Anciano , Péptidos beta-Amiloides/sangre , Masculino , Estudios Prospectivos , Fragmentos de Péptidos/sangre , Anciano de 80 o más Años , Sensibilidad y Especificidad , Persona de Mediana Edad , Suecia , Fosforilación , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/sangre
8.
JAMA Neurol ; 81(10): 1051-1059, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39068668

RESUMEN

Importance: The lack of an in vivo measure for α-synuclein (α-syn) pathology until recently has limited thorough characterization of its brain atrophy pattern, especially during early disease stages. Objective: To assess the association of state-of-the-art cerebrospinal fluid (CSF) seed amplification assays (SAA) α-syn positivity (SAA α-syn+) with magnetic resonance imaging (MRI) structural measures, across the continuum from clinically unimpaired (CU) to cognitively impaired (CI) individuals, in 3 independent cohorts, and separately in CU and CI individuals, the latter reflecting a memory clinic population. Design, Setting, and Participants: Cross-sectional data were used from the Swedish BioFINDER-2 study (inclusion, 2017-2023) as the discovery cohort and the Swedish BioFINDER-1 study (inclusion, 2007-2015) and Alzheimer's Disease Neuroimaging Initiative (ADNI; inclusion 2005-2022) as replication cohorts. All cohorts are from multicenter studies, but the BioFINDER cohorts used 1 MRI scanner. CU and CI individuals fulfilling inclusion criteria and without missing data points in relevant metrics were included in the study. All analyses were performed from 2023 to 2024. Exposures: Presence of α-syn pathology, estimated by baseline CSF SAA α-syn. Main Outcomes and Measures: The primary outcomes were cross-sectional structural MRI measures either through voxel-based morphometry (VBM) or regions of interest (ROI) including an automated pipeline for cholinergic basal forebrain nuclei CH4/4p (nucleus basalis of Meynert [NBM]) and CH1/2/3. Secondary outcomes were domain-specific cross-sectional cognitive measures. Analyses were adjusted for CSF biomarkers of Alzheimer pathology. Results: A total of 2961 participants were included in this study: 1388 (mean [SD] age, 71 [10] years; 702 female [51%]) from the BioFINDER-2 study, 752 (mean [SD] age, 72 [6] years; 406 female [54%]) from the BioFINDER-1 study, and 821 (mean [SD] age, 75 [8] years; 449 male [55%]) from ADNI. In the BioFINDER-2 study, VBM analyses in the whole cohort revealed a specific association between SAA α-syn+ and the cholinergic NBM, even when adjusting for Alzheimer copathology. ROI-based analyses in the BioFINDER-2 study focused on regions involved in the cholinergic system and confirmed that SAA α-syn+ was indeed independently associated with smaller NBM (ß = -0.271; 95% CI, -0.399 to -0.142; P <.001) and CH1/2/3 volumes (ß = -0.227; 95% CI, -0.377 to -0.076; P =.02). SAA α-syn+ was also independently associated with smaller NBM volumes in the separate CU (ß = -0.360; 95% CI, -0.603 to -0.117; P =.03) and CI (ß = -0.251; 95% CI, -0.408 to -0.095; P =.02) groups. Overall, the association between SAA α-syn+ and NBM volume was replicated in the BioFINDER-1 study and ADNI cohort. In CI individuals, NBM volumes partially mediated the association of SAA α-syn+ with attention/executive impairments in all cohorts (BioFINDER-2, ß = -0.017; proportion-mediated effect, 7%; P =.04; BioFINDER-1, ß = -0.096; proportion-mediated effect, 19%; P =.04; ADNI, ß = -0.061; proportion-mediated effect, 20%; P =.007). Conclusions and Relevance: In this cohort study, SAA α-syn+ was consistently associated with NBM atrophy already during asymptomatic stages. Further, in memory clinic CI populations, SAA α-syn+ was associated with NBM atrophy, which partially mediated α-syn-induced attention/executive impairment.


Asunto(s)
Disfunción Cognitiva , Imagen por Resonancia Magnética , alfa-Sinucleína , Humanos , Femenino , Masculino , Anciano , alfa-Sinucleína/líquido cefalorraquídeo , alfa-Sinucleína/metabolismo , Estudios Transversales , Persona de Mediana Edad , Disfunción Cognitiva/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/líquido cefalorraquídeo , Anciano de 80 o más Años , Estudios de Cohortes , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Suecia , Biomarcadores/líquido cefalorraquídeo
9.
medRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38947084

RESUMEN

The pathophysiology underlying various manifestations of cerebral small vessel disease (cSVD) remains obscure. Using cerebrospinal fluid proximity extension assays and co-expression network analysis of 2,943 proteins, we found common and distinct proteomic signatures between white matter lesions (WML), microbleeds and infarcts measured in 856 living patients, and validated WML-associated proteins in three additional datasets. Proteins indicative of extracellular matrix dysregulation and vascular remodeling, including ELN, POSTN, CCN2 and MMP12 were elevated across all cSVD manifestations, with MMP12 emerging as an early cSVD indicator. cSVD-associated proteins formed a co-abundance network linked to metabolism and enriched in endothelial and arterial smooth muscle cells, showing elevated levels at early disease manifestations. Later disease stages involved changes in microglial proteins, associated with longitudinal WML progression, and changes in neuronal proteins mediating WML-associated cognitive decline. These findings provide an atlas of novel cSVD biomarkers and a promising roadmap for the next generation of cSVD therapeutics.

11.
medRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38947004

RESUMEN

Plasma p-tau217 and Tau-PET are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In this head-to-head comparison study including 9 cohorts and 1534 individuals, we found that plasma p-tau217 and medial temporal lobe Tau-PET signal showed similar associations with cognitive decline on a global cognitive composite test (R2 PET=0.32 vs R2 PLASMA=0.32, pdifference=0.812) and with progression to mild cognitive impairment (Hazard ratio[HR]PET=1.56[1.43-1.70] vs HRPLASMA=1.63[1.50-1.77], pdifference=0.627). Combined plasma and PET models were superior to the single biomarker models (R2=0.36, p<0.01). Furthermore, sequential selection using plasma p-tau217 and then Tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 75% reduction when using plasma p-tau217 alone. We conclude that plasma p-tau217 and Tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use (i.e., plasma p-tau217 followed by Tau-PET in a subset with high plasma p-tau217) is useful for screening in clinical trials in preclinical AD.

12.
medRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39006421

RESUMEN

Plasma phosphorylated-tau 217 (p-tau217) is currently the most promising biomarkers for reliable detection of Alzheimer's disease (AD) pathology. Various p-tau217 assays have been developed, but their relative performance is unclear. We compared key plasma p-tau217 tests using cross-sectional and longitudinal measures of amyloid-ß (Aß)-PET, tau-PET, and cognition as outcomes, and benchmarked them against cerebrospinal fluid (CSF) biomarker tests. Samples from 998 individuals (mean[range] age 68.5[20.0-92.5], 53% female) from the Swedish BioFINDER-2 cohort were analyzed. Plasma p-tau217 was measured with mass spectrometry (MS) assays (the ratio between phosphorylated and non-phosphorylated [%p-tau217WashU]and ptau217WashU) as well as with immunoassays (p-tau217Lilly, p-tau217Janssen, p-tau217ALZpath). CSF biomarkers included p-tau217Lilly, and the FDA-approved p-tau181/Aß42Elecsys and p-tau181Elecsys. All plasma p-tau217 tests exhibited high ability to detect abnormal Aß-PET (AUC range: 0.91-0.96) and tau-PET (AUC range: 0.94-0.97). Plasma %p-tau217WashU had the highest performance, with significantly higher AUCs than all the immunoassays (P diff<0.007). For detecting Aß-PET status, %p-tau217WashU had an accuracy of 0.93 (immunoassays: 0.83-0.88), sensitivity of 91% (immunoassays: 84-87%), and a specificity of 94% (immunoassays: 85-89%). Among immunoassays, p-tau217Lilly and plasma p-tau217ALZpath had higher AUCs than plasma p-tau217Janssen for Aß-PET status (P diff<0.006), and p-tau217Lilly outperformed plasma p-tau217ALZpath for tau-PET status (P diff=0.025). Plasma %p-tau217WashU exhibited higher associations with all PET load outcomes compared to immunoassays; baseline Aß-PET load (R2: 0.72; immunoassays: 0.47-0.58; Pdiff<0.001), baseline tau-PET load (R2: 0.51; immunoassays: 0.38-0.45; Pdiff<0.001), longitudinal Aß-PET load (R2: 0.53; immunoassays: 0.31-0.38; Pdiff<0.001) and longitudinal tau-PET load (R2: 0.50; immunoassays: 0.35-0.43; Pdiff<0.014). Among immunoassays, plasma p-tau217Lilly was more strongly associated with Aß-PET load than plasma p-tau217Janssen (P diff<0.020) and with tau-PET load than both plasma p-tau217Janssen and plasma p-tau217ALZpath (all P diff<0.010). Plasma %p-tau217 also correlated more strongly with baseline cognition (Mini-Mental State Examination[MMSE]) than all immunoassays (R2 %p-tau217WashU: 0.33; immunoassays: 0.27-0.30; P diff<0.024). The main results were replicated in an external cohort from Washington University in St Louis (n =219). Finally, p-tau217Nulisa showed similar performance to other immunoassays in subsets of both cohorts. In summary, both MS- and immunoassay-based p-tau217 tests generally perform well in identifying Aß-PET, tau-PET, and cognitive abnormalities, but %p-tau217WashU performed significantly better than all the examined immunoassays. Plasma %p-tau217 may be considered as a stand-alone confirmatory test for AD pathology, while some immunoassays might be better suited as triage tests where positive results are confirmed with a second test.

13.
Alzheimers Res Ther ; 16(1): 153, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970077

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder where pathophysiological changes begin decades before the onset of clinical symptoms. Analysis of brain atrophy patterns using structural MRI and multivariate data analysis are an effective tool in identifying patients with subjective cognitive decline (SCD) at higher risk of progression to AD dementia. Atrophy patterns obtained from models trained to classify advanced AD versus normal subjects, may not be optimal for subjects at an early stage, like SCD. In this study, we compared the accuracy of the SCD progression prediction using the 'severity index' generated using a standard classification model trained on patients with AD dementia versus a new model trained on ß-amyloid (Aß) positive patients with amnestic mild cognitive impairment (aMCI). METHODS: We used structural MRI data of 504 patients from the Swedish BioFINDER-1 study cohort (cognitively normal (CN), Aß-negative = 220; SCD, Aß positive and negative = 139; aMCI, Aß-positive = 106; AD dementia = 39). We applied multivariate data analysis to create two predictive models trained to discriminate CN individuals from either individuals with Aß positive aMCI or AD dementia. Models were applied to individuals with SCD to classify their atrophy patterns as either high-risk "disease-like" or low-risk "CN-like". Clinical trajectory and model accuracy were evaluated using 8 years of longitudinal data. RESULTS: In predicting progression from SCD to MCI or dementia, the standard, dementia-based model, reached 100% specificity but only 10.6% sensitivity, while the new, aMCI-based model, reached 72.3% sensitivity and 60.9% specificity. The aMCI-based model was superior in predicting progression from SCD to MCI or dementia, reaching a higher receiver operating characteristic area under curve (AUC = 0.72; P = 0.037) in comparison with the dementia-based model (AUC = 0.57). CONCLUSION: When predicting conversion from SCD to MCI or dementia using structural MRI data, prediction models based on individuals with milder levels of atrophy (i.e. aMCI) may offer superior clinical value compared to standard dementia-based models.


Asunto(s)
Atrofia , Encéfalo , Disfunción Cognitiva , Demencia , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Atrofia/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/diagnóstico , Anciano , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Demencia/diagnóstico por imagen , Demencia/patología , Persona de Mediana Edad , Anciano de 80 o más Años , Estudios de Cohortes , Pruebas Neuropsicológicas , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología
14.
JAMA Neurol ; 81(9): 947-957, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39068669

RESUMEN

Importance: Phase 3 trials of successful antiamyloid therapies in Alzheimer disease (AD) have demonstrated improved clinical efficacy in people with less severe disease. Plasma biomarkers will be essential for efficient screening of participants in future primary prevention clinical trials testing antiamyloid therapies in cognitively unimpaired (CU) individuals with initially low brain ß-amyloid (Aß) levels who are at high risk of accumulating Aß. Objective: To investigate if combining plasma biomarkers could be useful in predicting subsequent development of Aß pathology in CU individuals with subthreshold brain Aß levels (defined as Aß levels <40 Centiloids) at baseline. Design, Setting, and Participants: This was a longitudinal study including Swedish BioFINDER-2 (enrollment 2017-2022) and replication in 2 independent cohorts, the Knight Alzheimer Disease Research Center (Knight ADRC; enrollment 1988 and 2019) and Swedish BioFINDER-1 (enrollment 2009-2015). Included for analysis was a convenience sample of CU individuals with baseline plasma phosphorylated tau 217 (p-tau217) and Aß42/40 assessments and Aß assessments with positron emission tomography (Aß-PET) or cerebrospinal fluid (CSF) Aß42/40. Data were analyzed between April 2023 and May 2024. Exposures: Baseline plasma levels of Aß42/40, p-tau217, the ratio of p-tau217 to nonphosphorylated tau (%p-tau217), p-tau231, and glial fibrillary acidic protein (GFAP). Main Outcomes and Measures: Cross-sectional and longitudinal PET and CSF measures of brain Aß pathology. Results: This study included 495 (BioFINDER-2), 283 (Knight ADRC), and 205 (BioFINDER-1) CU participants. In BioFINDER-2, the mean (SD) age was 65.7 (14.4) with 261 females (52.7%). When detecting abnormal CSF Aß-status, a combination of plasma %p-tau217 and Aß42/40 showed better performance (area under the curve = 0.949; 95% CI, 0.929-0.970; P <.02) than individual biomarkers. In CU participants with subthreshold baseline Aß-PET, baseline plasma %p-tau217 and Aß42/40 levels were significantly associated with baseline Aß-PET (n = 384) and increases in Aß-PET over time (n = 224). Associations of plasma %p-tau217 and Aß42/40 and their interaction with baseline Aß-PET (%p-tau217: ß = 2.77; 95% CI, 1.84-3.70; Aß42/40: ß = -1.64; 95% CI, -2.53 to -0.75; %p-tau217 × Aß42/40: ß = -2.14; 95% CI, -2.79 to -1.49; P < .001) and longitudinal Aß-PET (%p-tau217: ß = 0.67; 95% CI, 0.48-0.87; Aß42/40: ß = -0.33; 95% CI, -0.51 to -0.15; %p-tau217 × Aß42/40: ß = -0.31; 95% CI, -0.44 to -0.18; P < .001) were also significant in the models combining the 2 baseline biomarkers as predictors. Similarly, baseline plasma p-tau217 and Aß42/40 were independently associated with longitudinal Aß-PET in Knight ADRC (%p-tau217: ß = 0.71; 95% CI, 0.26-1.16; P = .002; Aß42/40: ß = -0.74; 95% CI, -1.26 to -0.22; P = .006) and longitudinal CSF Aß42/40 in BioFINDER-1 (p-tau217: ß = -0.0003; 95% CI, -0.0004 to -0.0001; P = .01; Aß42/40: ß = 0.0004; 95% CI, 0.0002-0.0006; P < .001) in CU participants with subthreshold Aß levels at baseline. Plasma p-tau231 and GFAP did not provide any clear independent value. Conclusions and Relevance: Results of this cohort study suggest that combining plasma p-tau217and Aß42/40 levels could be useful for predicting development of Aß pathology in people with early stages of subthreshold Aß accumulation. These biomarkers might thus facilitate screening of participants for future primary prevention trials.


Asunto(s)
Péptidos beta-Amiloides , Biomarcadores , Encéfalo , Fragmentos de Péptidos , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/metabolismo , Proteínas tau/sangre , Femenino , Masculino , Anciano , Biomarcadores/sangre , Estudios Longitudinales , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/líquido cefalorraquídeo , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Fosforilación , Anciano de 80 o más Años , Disfunción Cognitiva/sangre
15.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826333

RESUMEN

Background: The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfield volumes and drivers of atrophy in amnestic EOAD is lacking. Methods: BioFINDER-2 participants with memory impairment, abnormal amyloid-ß status and tau-PET were included. Forty-one EOAD individuals aged ≤65 years and, as comparison, late-onset AD (LOAD, ≥70 years, n=154) and Aß-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. Results: AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups, although LOAD showed thinner entorhinal cortices compared to EOAD. EOAD showed lower WMH compared to LOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity was found. Conclusions: We found in vivo evidence for MTL atrophy in amnestic EOAD and overall similar levels to LOAD of MTL tau pathology and co-pathologies.

16.
medRxiv ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38853877

RESUMEN

Tau positron emission tomography (PET) is a reliable neuroimaging technique for assessing regional load of tau pathology in the brain, commonly used in Alzheimer's disease (AD) research and clinical trials. However, its routine clinical use is limited by cost and accessibility barriers. Here we explore using machine learning (ML) models to predict clinically useful tau-PET composites from low-cost and non-invasive features, e.g., basic clinical variables, plasma biomarkers, and structural magnetic resonance imaging (MRI). Results demonstrated that models including plasma biomarkers yielded the most accurate predictions of tau-PET burden (best model: R-squared=0.66-0.68), with especially high contribution from plasma P-tau217. In contrast, MRI variables stood out as best predictors (best model: R-squared=0.28-0.42) of asymmetric tau load between the two hemispheres (an example of clinically relevant spatial information). The models showed high generalizability to external test cohorts with data collected at multiple sites. Based on these results, we also propose a proof-of-concept two-step classification workflow, demonstrating how the ML models can be translated to a clinical setting. This study uncovers current potential in predicting tau-PET information from scalable cost-effective variables, which could improve diagnosis and prognosis of AD.

17.
JAMA Neurol ; 81(8): 845-856, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857029

RESUMEN

Importance: An accurate prognosis is especially pertinent in mild cognitive impairment (MCI), when individuals experience considerable uncertainty about future progression. Objective: To evaluate the prognostic value of tau positron emission tomography (PET) to predict clinical progression from MCI to dementia. Design, Setting, and Participants: This was a multicenter cohort study with external validation and a mean (SD) follow-up of 2.0 (1.1) years. Data were collected from centers in South Korea, Sweden, the US, and Switzerland from June 2014 to January 2024. Participant data were retrospectively collected and inclusion criteria were a baseline clinical diagnosis of MCI; longitudinal clinical follow-up; a Mini-Mental State Examination (MMSE) score greater than 22; and available tau PET, amyloid-ß (Aß) PET, and magnetic resonance imaging (MRI) scan less than 1 year from diagnosis. A total of 448 eligible individuals with MCI were included (331 in the discovery cohort and 117 in the validation cohort). None of these participants were excluded over the course of the study. Exposures: Tau PET, Aß PET, and MRI. Main Outcomes and Measures: Positive results on tau PET (temporal meta-region of interest), Aß PET (global; expressed in the standardized metric Centiloids), and MRI (Alzheimer disease [AD] signature region) was assessed using quantitative thresholds and visual reads. Clinical progression from MCI to all-cause dementia (regardless of suspected etiology) or to AD dementia (AD as suspected etiology) served as the primary outcomes. The primary analyses were receiver operating characteristics. Results: In the discovery cohort, the mean (SD) age was 70.9 (8.5) years, 191 (58%) were male, the mean (SD) MMSE score was 27.1 (1.9), and 110 individuals with MCI (33%) converted to dementia (71 to AD dementia). Only the model with tau PET predicted all-cause dementia (area under the receiver operating characteristic curve [AUC], 0.75; 95% CI, 0.70-0.80) better than a base model including age, sex, education, and MMSE score (AUC, 0.71; 95% CI, 0.65-0.77; P = .02), while the models assessing the other neuroimaging markers did not improve prediction. In the validation cohort, tau PET replicated in predicting all-cause dementia. Compared to the base model (AUC, 0.75; 95% CI, 0.69-0.82), prediction of AD dementia in the discovery cohort was significantly improved by including tau PET (AUC, 0.84; 95% CI, 0.79-0.89; P < .001), tau PET visual read (AUC, 0.83; 95% CI, 0.78-0.88; P = .001), and Aß PET Centiloids (AUC, 0.83; 95% CI, 0.78-0.88; P = .03). In the validation cohort, only the tau PET and the tau PET visual reads replicated in predicting AD dementia. Conclusions and Relevance: In this study, tau-PET showed the best performance as a stand-alone marker to predict progression to dementia among individuals with MCI. This suggests that, for prognostic purposes in MCI, a tau PET scan may be the best currently available neuroimaging marker.


Asunto(s)
Disfunción Cognitiva , Demencia , Progresión de la Enfermedad , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Masculino , Femenino , Tomografía de Emisión de Positrones/métodos , Anciano , Proteínas tau/metabolismo , Demencia/diagnóstico por imagen , Demencia/metabolismo , Estudios de Cohortes , Persona de Mediana Edad , Anciano de 80 o más Años , Pronóstico , Estudios Retrospectivos , Imagen por Resonancia Magnética , Valor Predictivo de las Pruebas , Péptidos beta-Amiloides/metabolismo
18.
Nat Commun ; 15(1): 3676, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693142

RESUMEN

Cerebrospinal fluid (CSF) biomarkers reflect brain pathophysiology and are used extensively in translational research as well as in clinical practice for diagnosis of neurological diseases, e.g., Alzheimer's disease (AD). However, CSF biomarker concentrations may be influenced by non-disease related inter-individual variability. Here we use a data-driven approach to demonstrate the existence of inter-individual variability in mean standardized CSF protein levels. We show that these non-disease related differences cause many commonly reported CSF biomarkers to be highly correlated, thereby producing misleading results if not accounted for. To adjust for this inter-individual variability, we identified and evaluated high-performing reference proteins which improved the diagnostic accuracy of key CSF AD biomarkers. Our reference protein method attenuates the risk for false positive findings, and improves the sensitivity and specificity of CSF biomarkers, with broad implications for both research and clinical practice.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Proteínas del Líquido Cefalorraquídeo , Humanos , Biomarcadores/líquido cefalorraquídeo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Proteínas del Líquido Cefalorraquídeo/análisis , Proteínas del Líquido Cefalorraquídeo/metabolismo , Masculino , Femenino , Sensibilidad y Especificidad , Anciano , Encefalopatías/líquido cefalorraquídeo , Encefalopatías/diagnóstico , Persona de Mediana Edad , Péptidos beta-Amiloides/líquido cefalorraquídeo
19.
Brain ; 147(7): 2400-2413, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38654513

RESUMEN

Memory clinic patients are a heterogeneous population representing various aetiologies of pathological ageing. It is not known whether divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± standard deviation, age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (n = 342), mild cognitive impairment (n = 118) or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid Alzheimer's disease biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5) as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test whether baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and mild cognitive impairment conversion rates of cognitively unimpaired participants and those with subjective cognitive decline. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy initially affected the medial temporal lobes, followed by further temporal regions and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological Alzheimer's disease biomarker levels, APOE ε4 carriership and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe, with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive Alzheimer's disease biomarkers and was associated with more generalized cognitive impairment. Limbic-predominant atrophy, in all participants and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of mild cognitive impairment conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, at both the subject and the group level, was excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for Alzheimer's disease in applied settings. The implementation of atrophy subtype- and stage-specific end points might increase the statistical power of pharmacological trials targeting early Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Atrofia/patología , Anciano , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/patología , Persona de Mediana Edad , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Pruebas Neuropsicológicas , Estudios de Cohortes , Anciano de 80 o más Años , Memoria Episódica , Trastornos de la Memoria/patología
20.
Crit Care ; 28(1): 116, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594704

RESUMEN

BACKGROUND: The purpose was to evaluate glial fibrillary acidic protein (GFAP) and total-tau in plasma as predictors of poor neurological outcome after out-of-hospital (OHCA) and in-hospital cardiac arrest (IHCA), including comparisons with neurofilament light (NFL) and neuron-specific enolase (NSE). METHODS: Retrospective multicentre observational study of patients admitted to an intensive care unit (ICU) in three hospitals in Sweden 2014-2018. Blood samples were collected at ICU admission, 12 h, and 48 h post-cardiac arrest. Poor neurological outcome was defined as Cerebral Performance Category 3-5 at 2-6 months after cardiac arrest. Plasma samples were retrospectively analysed for GFAP, tau, and NFL. Serum NSE was analysed in clinical care. Prognostic performances were tested with the area under the receiver operating characteristics curve (AUC). RESULTS: Of the 428 included patients, 328 were OHCA, and 100 were IHCA. At ICU admission, 12 h and 48 h post-cardiac arrest, GFAP predicted neurological outcome after OHCA with AUC (95% CI) 0.76 (0.70-0.82), 0.86 (0.81-0.90) and 0.91 (0.87-0.96), and after IHCA with AUC (95% CI) 0.77 (0.66-0.87), 0.83 (0.74-0.92) and 0.83 (0.71-0.95). At the same time points, tau predicted outcome after OHCA with AUC (95% CI) 0.72 (0.66-0.79), 0.75 (0.69-0.81), and 0.93 (0.89-0.96) and after IHCA with AUC (95% CI) 0.61 (0.49-0.74), 0.68 (0.56-0.79), and 0.77 (0.65-0.90). Adding the change in biomarker levels between time points did not improve predictive accuracy compared to the last time point. In a subset of patients, GFAP at 12 h and 48 h, as well as tau at 48 h, offered similar predictive value as NSE at 48 h (the earliest time point NSE is recommended in guidelines) after both OHCA and IHCA. The predictive performance of NFL was similar or superior to GFAP and tau at all time points after OHCA and IHCA. CONCLUSION: GFAP and tau are promising biomarkers for neuroprognostication, with the highest predictive performance at 48 h after OHCA, but not superior to NFL. The predictive ability of GFAP may be sufficiently high for clinical use at 12 h after cardiac arrest.


Asunto(s)
Paro Cardíaco Extrahospitalario , Humanos , Proteína Ácida Fibrilar de la Glía , Estudios Retrospectivos , Filamentos Intermedios , Pronóstico , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...