Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35972204

RESUMEN

Cell division and the resulting changes to the cell organization affect the shape and functionality of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell division is a key question in developmental biology. Here, we use a network representation of live cell imaging data from shoot apical meristems (SAMs) in Arabidopsis thaliana to predict cell division events and their consequences at the tissue level. We show that a support vector machine classifier based on the SAM network properties is predictive of cell division events, with test accuracy of 76%, which matches that based on cell size alone. Furthermore, we demonstrate that the combination of topological and biological properties, including cell size, perimeter, distance and shared cell wall between cells, can further boost the prediction accuracy of resulting changes in topology triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule-mediated cell-to-cell growth coordination in influencing tissue-level topology. Together, the results from our network-based analysis demonstrate a feedback mechanism between tissue topology and cell division in A. thaliana SAMs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo
2.
Curr Biol ; 31(15): 3262-3274.e6, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107303

RESUMEN

Mechanical stress influences cell- and tissue-scale processes across all kingdoms. It remains challenging to delineate how mechanical stress, originating at these different length scales, impacts cell and tissue form. We combine growth tracking of cells, quantitative image analysis, as well as molecular and mechanical perturbations to address this problem in pavement cells of Arabidopsis thaliana cotyledon tissue. We show that microtubule organization based on chemical signals and cell-shape-derived mechanical stress varies during early stages of pavement cell development and is mediated by the evolutionary conserved proteins, KATANIN and CLASP. However, we find that these proteins regulate microtubule organization in response to tissue-scale mechanical stress to different extents in the cotyledon epidermis. Our results further demonstrate that regulation of cotyledon form is uncoupled from the mechanical-stress-dependent control of pavement cell shape that relies on microtubule organization governed by subcellular mechanical stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Katanina , Proteínas Asociadas a Microtúbulos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotiledón/metabolismo , Katanina/genética , Katanina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA