Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798557

RESUMEN

Genetic variation within intron 3 of the CACNA1C calcium channel gene is associated with schizophrenia and bipolar disorder, but analysis of the causal variants and their effect is complicated by a nearby variable-number tandem repeat (VNTR). Here, we used 155 long-read genome assemblies from 78 diverse individuals to delineate the structure and population variability of the CACNA1C intron 3 VNTR. We categorized VNTR sequences into 7 Types of structural alleles using sequence differences among repeat units. Only 12 repeat units at the 5' end of the VNTR were shared across most Types, but several Types were related through a series of large and small duplications. The most diverged Types were rare and present only in individuals with African ancestry, but the multiallelic structural polymorphism Variable Region 2 was present across populations at different frequencies, consistent with expansion of the VNTR preceding the emergence of early hominins. VR2 was in complete linkage disequilibrium with fine-mapped schizophrenia variants (SNPs) from genome-wide association studies (GWAS). This risk haplotype was associated with decreased CACNA1C gene expression in brain tissues profiled by the GTEx project. Our work suggests that sequence variation within a human-specific VNTR affects gene expression, and provides a detailed characterization of new alleles at a flagship neuropsychiatric locus.

2.
Mol Cell ; 84(10): 1842-1854.e7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759624

RESUMEN

Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.


Asunto(s)
Factor de Unión a CCCTC , Elementos de Facilitación Genéticos , Factor II del Crecimiento Similar a la Insulina , ARN Largo no Codificante , Factores de Transcripción SOXB1 , Animales , Ratones , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Región de Control de Posición/genética , Impresión Genómica , Genómica/métodos
3.
Nature ; 628(8007): 373-380, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448583

RESUMEN

Pervasive transcriptional activity is observed across diverse species. The genomes of extant organisms have undergone billions of years of evolution, making it unclear whether these genomic activities represent effects of selection or 'noise'1-4. Characterizing default genome states could help understand whether pervasive transcriptional activity has biological meaning. Here we addressed this question by introducing a synthetic 101-kb locus into the genomes of Saccharomyces cerevisiae and Mus musculus and characterizing genomic activity. The locus was designed by reversing but not complementing human HPRT1, including its flanking regions, thus retaining basic features of the natural sequence but ablating evolved coding or regulatory information. We observed widespread activity of both reversed and native HPRT1 loci in yeast, despite the lack of evolved yeast promoters. By contrast, the reversed locus displayed no activity at all in mouse embryonic stem cells, and instead exhibited repressive chromatin signatures. The repressive signature was alleviated in a locus variant lacking CpG dinucleotides; nevertheless, this variant was also transcriptionally inactive. These results show that synthetic genomic sequences that lack coding information are active in yeast, but inactive in mouse embryonic stem cells, consistent with a major difference in 'default genomic states' between these two divergent eukaryotic cell types, with implications for understanding pervasive transcription, horizontal transfer of genetic information and the birth of new genes.


Asunto(s)
Genes Sintéticos , Genoma , Saccharomyces cerevisiae , Transcripción Genética , Animales , Humanos , Ratones , Cromatina/genética , Islas de CpG , Genes Sintéticos/genética , Genoma/genética , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Hipoxantina Fosforribosiltransferasa/genética , Evolución Molecular
4.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418917

RESUMEN

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Asunto(s)
Empalme Alternativo , Evolución Molecular , Hominidae , Proteínas de Dominio T Box , Cola (estructura animal) , Animales , Humanos , Ratones , Empalme Alternativo/genética , Elementos Alu/genética , Modelos Animales de Enfermedad , Genoma/genética , Hominidae/anatomía & histología , Hominidae/genética , Intrones/genética , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Fenotipo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/embriología , Exones/genética
5.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-37781588

RESUMEN

Enhancer function is frequently investigated piecemeal using truncated reporter assays or single deletion analysis. Thus it remains unclear to what extent enhancer function at native loci relies on surrounding genomic context. Using the Big-IN technology for targeted integration of large DNAs, we analyzed the regulatory architecture of the murine Igf2/H19 locus, a paradigmatic model of enhancer selectivity. We assembled payloads containing a 157-kb functional Igf2/H19 locus and engineered mutations to genetically direct CTCF occupancy at the imprinting control region (ICR) that switches the target gene of the H19 enhancer cluster. Contrasting activity of payloads delivered at the endogenous Igf2/H19 locus or ectopically at Hprt revealed that the Igf2/H19 locus includes additional, previously unknown long-range regulatory elements. Exchanging components of the Igf2/H19 locus with the well-studied Sox2 locus showed that the H19 enhancer cluster functioned poorly out of context, and required its native surroundings to activate Sox2 expression. Conversely, the Sox2 locus control region (LCR) could activate both Igf2 and H19 outside its native context, but its activity was only partially modulated by CTCF occupancy at the ICR. Analysis of regulatory DNA actuation across different cell types revealed that, while the H19 enhancers are tightly coordinated within their native locus, the Sox2 LCR acts more independently. We show that these enhancer clusters typify broader classes of loci genome-wide. Our results show that unexpected dependencies may influence even the most studied functional elements, and our synthetic regulatory genomics approach permits large-scale manipulation of complete loci to investigate the relationship between locus architecture and function.

6.
Nature ; 623(7986): 423-431, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914927

RESUMEN

Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Modelos Animales de Enfermedad , Ingeniería Genética , Genoma , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Alelos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/virología , ADN/genética , Farmacorresistencia Microbiana/genética , Ingeniería Genética/métodos , Genoma/genética , Células Madre Embrionarias de Ratones/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidasas/genética , Proteína p53 Supresora de Tumor/genética
7.
Mol Cell ; 83(7): 1140-1152.e7, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931273

RESUMEN

Sox2 expression in mouse embryonic stem cells (mESCs) depends on a distal cluster of DNase I hypersensitive sites (DHSs), but their individual contributions and degree of interdependence remain a mystery. We analyzed the endogenous Sox2 locus using Big-IN to scarlessly integrate large DNA payloads incorporating deletions, rearrangements, and inversions affecting single or multiple DHSs, as well as surgical alterations to transcription factor (TF) recognition sequences. Multiple mESC clones were derived for each payload, sequence-verified, and analyzed for Sox2 expression. We found that two DHSs comprising a handful of key TF recognition sequences were each sufficient for long-range activation of Sox2 expression. By contrast, three nearby DHSs were entirely context dependent, showing no activity alone but dramatically augmenting the activity of the autonomous DHSs. Our results highlight the role of context in modulating genomic regulatory element function, and our synthetic regulatory genomics approach provides a roadmap for the dissection of other genomic loci.


Asunto(s)
Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Ratones , Elementos de Facilitación Genéticos , Genómica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción SOXB1/metabolismo
8.
Nat Commun ; 13(1): 7619, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494342

RESUMEN

Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis, with increased incidence in older individuals. Here we analyze the transcriptome of human HSCs purified from young and older healthy adults, as well as MDS patients, identifying transcriptional alterations following different patterns of expression. While aging-associated lesions seem to predispose HSCs to myeloid transformation, disease-specific alterations may trigger MDS development. Among MDS-specific lesions, we detect the upregulation of the transcription factor DNA Damage Inducible Transcript 3 (DDIT3). Overexpression of DDIT3 in human healthy HSCs induces an MDS-like transcriptional state, and dyserythropoiesis, an effect associated with a failure in the activation of transcriptional programs required for normal erythroid differentiation. Moreover, DDIT3 knockdown in CD34+ cells from MDS patients with anemia is able to restore erythropoiesis. These results identify DDIT3 as a driver of dyserythropoiesis, and a potential therapeutic target to restore the inefficient erythroid differentiation characterizing MDS patients.


Asunto(s)
Síndromes Mielodisplásicos , Factores de Transcripción , Adulto , Humanos , Anciano , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Síndromes Mielodisplásicos/patología , Eritropoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Regulación de la Expresión Génica , Factor de Transcripción CHOP/genética
9.
iScience ; 25(6): 104438, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35692632

RESUMEN

Overwriting counterselectable markers is an efficient strategy for removing wild-type DNA or replacing it with payload DNA of interest. Currently, one bottleneck of efficient genome engineering in mammals is the shortage of counterselectable (negative selection) markers that work robustly without affecting organismal developmental potential. Here, we report a conditional Piga knockout strategy that enables efficient proaerolysin-based counterselection in mouse embryonic stem cells. The conditional Piga knockout cells show similar proaerolysin resistance as full (non-conditional) Piga deletion cells, which enables the use of a PIGA transgene as a counterselectable marker for genome engineering purposes. Native Piga function is readily restored in conditional Piga knockout cells to facilitate subsequent mouse development. We also demonstrate the generality of our strategy by engineering a conditional knockout of endogenous Hprt. Taken together, our work provides a new tool for advanced mouse genome writing and mouse model establishment.

10.
Science ; 377(6601): eabk2820, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35771912

RESUMEN

Precise Hox gene expression is crucial for embryonic patterning. Intra-Hox transcription factor binding and distal enhancer elements have emerged as the major regulatory modules controlling Hox gene expression. However, quantifying their relative contributions has remained elusive. Here, we introduce "synthetic regulatory reconstitution," a conceptual framework for studying gene regulation, and apply it to the HoxA cluster. We synthesized and delivered variant rat HoxA clusters (130 to 170 kilobases) to an ectopic location in the mouse genome. We found that a minimal HoxA cluster recapitulated correct patterns of chromatin remodeling and transcription in response to patterning signals, whereas the addition of distal enhancers was needed for full transcriptional output. Synthetic regulatory reconstitution could provide a generalizable strategy for deciphering the regulatory logic of gene expression in complex genomes.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio , Animales , Tipificación del Cuerpo/genética , Elementos de Facilitación Genéticos , Genoma , Proteínas de Homeodominio/genética , Ratones , Ratas , Transcripción Genética
11.
Hum Genet ; 141(8): 1431-1447, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35147782

RESUMEN

Drug development and biological discovery require effective strategies to map existing genetic associations to causal genes. To approach this problem, we selected 12 common diseases and quantitative traits for which highly powered genome-wide association studies (GWAS) were available. For each disease or trait, we systematically curated positive control gene sets from Mendelian forms of the disease and from targets of medicines used for disease treatment. We found that these positive control genes were highly enriched in proximity of GWAS-associated single-nucleotide variants (SNVs). We then performed quantitative assessment of the contribution of commonly used genomic features, including open chromatin maps, expression quantitative trait loci (eQTL), and chromatin conformation data. Using these features, we trained and validated an Effector Index (Ei), to map target genes for these 12 common diseases and traits. Ei demonstrated high predictive performance, both with cross-validation on the training set, and an independently derived set for type 2 diabetes. Key predictive features included coding or transcript-altering SNVs, distance to gene, and open chromatin-based metrics. This work outlines a simple, understandable approach to prioritize genes at GWAS loci for functional follow-up and drug development, and provides a systematic strategy for prioritization of GWAS target genes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Cromatina/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
12.
Genome Res ; 32(3): 425-436, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35082140

RESUMEN

The specificity of interactions between genomic regulatory elements and potential target genes is influenced by the binding of insulator proteins such as CTCF, which can act as potent enhancer blockers when interposed between an enhancer and a promoter in a reporter assay. But not all CTCF sites genome-wide function as insulator elements, depending on cellular and genomic context. To dissect the influence of genomic context on enhancer blocker activity, we integrated reporter constructs with promoter-only, promoter and enhancer, and enhancer blocker configurations at hundreds of thousands of genomic sites using the Sleeping Beauty transposase. Deconvolution of reporter activity by genomic position reveals distinct expression patterns subject to genomic context, including a compartment of enhancer blocker reporter integrations with robust expression. The high density of integration sites permits quantitative delineation of characteristic genomic context sensitivity profiles and their decomposition into sensitivity to both local and distant DNase I hypersensitive sites. Furthermore, using a single-cell expression approach to test the effect of integrated reporters for differential expression of nearby endogenous genes reveals that CTCF insulator elements do not completely abrogate reporter effects on endogenous gene expression. Collectively, our results lend new insight into genomic regulatory compartmentalization and its influence on the determinants of promoter-enhancer specificity.


Asunto(s)
Elementos de Facilitación Genéticos , Elementos Aisladores , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Genómica , Regiones Promotoras Genéticas
13.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930847

RESUMEN

Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 "trios" (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10-4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C Both RYR2 mutations are pathogenic (P = 1.7 × 10-7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10-7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.


Asunto(s)
Arritmias Cardíacas/genética , Señalización del Calcio/genética , Muerte Súbita , Epilepsia/genética , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación/genética , Secuenciación del Exoma
14.
PLoS Pathog ; 17(5): e1009571, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015049

RESUMEN

During the first phase of the COVID-19 epidemic, New York City rapidly became the epicenter of the pandemic in the United States. While molecular phylogenetic analyses have previously highlighted multiple introductions and a period of cryptic community transmission within New York City, little is known about the circulation of SARS-CoV-2 within and among its boroughs. We here perform phylogeographic investigations to gain insights into the circulation of viral lineages during the first months of the New York City outbreak. Our analyses describe the dispersal dynamics of viral lineages at the state and city levels, illustrating that peripheral samples likely correspond to distinct dispersal events originating from the main metropolitan city areas. In line with the high prevalence recorded in this area, our results highlight the relatively important role of the borough of Queens as a transmission hub associated with higher local circulation and dispersal of viral lineages toward the surrounding boroughs.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , SARS-CoV-2/genética , Genoma Viral/genética , Humanos , Ciudad de Nueva York/epidemiología , Filogenia , Filogeografía , Prevalencia , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación
15.
Nat Commun ; 12(1): 2850, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990600

RESUMEN

Functional assessment of disease-associated sequence variation at non-coding regulatory elements is complicated by their high degree of context sensitivity to both the local chromatin and nuclear environments. Allelic profiling of DNA accessibility across individuals has shown that only a select minority of sequence variation affects transcription factor (TF) occupancy, yet low sequence diversity in human populations means that no experimental assessment is available for the majority of disease-associated variants. Here we describe high-resolution in vivo maps of allelic DNA accessibility in liver, kidney, lung and B cells from 5 increasingly diverged strains of F1 hybrid mice. The high density of heterozygous sites in these hybrids enables precise quantification of effect size and cell-type specificity for hundreds of thousands of variants throughout the mouse genome. We show that chromatin-altering variants delineate characteristic sensitivity profiles for hundreds of TF motifs. We develop a compendium of TF-specific sensitivity profiles accounting for genomic context effects. Finally, we link maps of allelic accessibility to allelic transcript levels in the same samples. This work provides a foundation for quantitative prediction of cell-type specific effects of non-coding variation on TF activity, which will facilitate both fine-mapping and systems-level analyses of common disease-associated variation in human genomes.


Asunto(s)
ADN/genética , Alelos , Animales , Sitios de Unión/genética , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , ADN/metabolismo , Femenino , Regulación de la Expresión Génica , Variación Genética , Genoma Humano , Humanos , Hibridación Genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Especificidad de Órganos/genética , Penetrancia , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649239

RESUMEN

Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sitios Genéticos , Genoma Humano , Células Madre Embrionarias Humanas , Células Madre Embrionarias de Ratones , Animales , Línea Celular , Humanos , Ratones
17.
Genetics ; 218(1)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33742653

RESUMEN

Design and large-scale synthesis of DNA has been applied to the functional study of viral and microbial genomes. New and expanded technology development is required to unlock the transformative potential of such bottom-up approaches to the study of larger mammalian genomes. Two major challenges include assembling and delivering long DNA sequences. Here, we describe a workflow for de novo DNA assembly and delivery that enables functional evaluation of mammalian genes on the length scale of 100 kilobase pairs (kb). The DNA assembly step is supported by an integrated robotic workcell. We demonstrate assembly of the 101 kb human HPRT1 gene in yeast from 3 kb building blocks, precision delivery of the resulting construct to mouse embryonic stem cells, and subsequent expression of the human protein from its full-length human gene in mouse cells. This workflow provides a framework for mammalian genome writing. We envision utility in producing designer variants of human genes linked to disease and their delivery and functional analysis in cell culture or animal models.


Asunto(s)
Clonación Molecular/métodos , Ingeniería Genética/métodos , Animales , ADN/genética , Técnicas de Transferencia de Gen/veterinaria , Técnicas Genéticas/veterinaria , Genoma/genética , Genómica/métodos , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Ratones , Análisis de Secuencia de ADN/métodos , Flujo de Trabajo
18.
Emerg Microbes Infect ; 10(1): 51-65, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33306459

RESUMEN

COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.


Asunto(s)
COVID-19/complicaciones , Mutación , SARS-CoV-2/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/virología , Brotes de Enfermedades , Femenino , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Polimorfismo de Nucleótido Simple , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Uruguay/epidemiología , Adulto Joven
19.
Genome Res ; 30(12): 1781-1788, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33093069

RESUMEN

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.


Asunto(s)
COVID-19 , Genoma Viral , Pandemias , Filogenia , SARS-CoV-2/genética , Secuenciación Completa del Genoma , COVID-19/epidemiología , COVID-19/genética , COVID-19/transmisión , Femenino , Humanos , Masculino , Ciudad de Nueva York
20.
medRxiv ; 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32511587

RESUMEN

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA