Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Med Genet ; 66(9): 104821, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37579815

RESUMEN

Recently, Stenton et al. (2021) described a new, autosomal recessive inheritance pattern of Leber's hereditary optic neuropathy (LHON) caused by missense variants in the DNAJC30 gene. The DNAJC30 c.152A > G, p.(Tyr51Cys) variant was by far the most common variant reported in patients originating from Eastern Europe, therefore, it is believed to be a founder variant in these populations. We report the first two cases of DNAJC30-linked autosomal recessive LHON in a young male and a female originating from Estonia. The patients presented severe loss of central vision and clinical features indistinguishable from mitochondrial LHON. The whole exome sequencing carried out in the male patient and the next-generation sequencing panel in the young female patient identified the same homozygous missense variant in the DNAJC30 gene. Our cases further reinforce the pathogenicity of c.152A > G, p.(Tyr51Cys) DNAJC30 variant causing autosomal recessive LHON. According to the gnomAD database, the allele frequency of this variant in the Estonian population is 0.8%, translating into a prevalence of carriers of 1:60. It is the highest among different gnomAD populations. Applying the Hardy-Weinberg equation, an estimated 92 persons in the Estonian population carry the homozygous variant c.152A > G, p.(Tyr51Cys) in DNAJC30. In patients with LHON, we advise sequencing both the DNAJC30 gene and mitochondrial DNA simultaneously.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Femenino , Humanos , Masculino , ADN Mitocondrial/genética , Heterocigoto , Homocigoto , Mitocondrias/genética , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/epidemiología
2.
Exp Clin Endocrinol Diabetes ; 119(5): 271-5, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21031341

RESUMEN

Wolfram syndrome, caused by mutations in the wolframin (Wfs1) gene, is characterised by juvenile-onset diabetes mellitus, progressive optic atrophy, diabetes insipidus and deafness. Diabetes tend to start earlier in boys. This study investigated sex differences in longitudinal changes in blood glucose concentration (BGC) in wolframin-deficient mice (Wfs1KO) and compared their plasma proinsulin and insulin levels with those of wild-type (wt) mice. Non-fasting BGC was measured weekly in 42 (21 males) mice from both groups at nine weeks of age. An intraperitoneal glucose tolerance test (IPGTT) was conducted at the 30 (th) week and plasma insulin, c-peptide and proinsulin levels were measured at the 32 (nd) week. At the 32 (nd) week, Wfs1KO males had increased BGC compared to wt males (9.40±0.60 mmol/l vs. 7.91±0.20 mmol/l; p<0.05). The opposite tendency was seen in females. Both male and female Wfs1KO mice had impaired glucose tolerance on IPGTT. Wfs1KO males had significantly lower mean plasma insulin levels than wt males (57.78±1.80 ng/ml vs. 69.42±3.06 ng/ml; p<0.01) and Wfs1KO females (70.30±4.42 ng/ml; p<0.05). Wfs1KO males had a higher proinsulin/insulin ratio than wt males (0.09±0.02 vs. 0.05±0.01; p=0.05) and Wfs1KO females (0.04±0.01; p<0.05). Plasma c-peptide levels in males were lower in Wfs1KO males (mean 55.3±14.0 pg/ml vs. 112.7±21.9 pg/ml; p<0.05). Male Wfs1KO mice had a greater risk of developing diabetes than female Wfs1KO mice. Low plasma insulin concentration with an increased proinsulin/insulin ratio in Wfs1KO males indicates possible disturbances in converting proinsulin to insulin which in long-term may lead to insulin deficiency. Further investigation is needed to clarify the mechanism for the sex differences in the development of diabetes in Wolfram syndrome.


Asunto(s)
Diabetes Mellitus Experimental/genética , Proteínas de la Membrana/genética , Caracteres Sexuales , Animales , Glucemia/metabolismo , Peso Corporal , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Progresión de la Enfermedad , Femenino , Eliminación de Gen , Prueba de Tolerancia a la Glucosa/métodos , Hormonas/sangre , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...