Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(25): 9694-9702, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38939128

RESUMEN

Lanthanide(iii) (Ln3+) complexes have desirable photophysical properties for optical bioimaging. However, despite their advantages over organic dyes, their use for microscopy imaging is limited by the high-energy UV excitation they require and their poor ability to cross the cell membrane and reach the cytosol. Here we describe a novel family of lanthanide-based luminescent probes, termed dTAT[Ln·L], based on (i) a DOTA-like chelator with a picolinate moiety, (ii) a two-photon absorbing antenna to shift the excitation to the near infrared and (ii) a dimeric TAT cell-penetrating peptide for cytosolic delivery. Several Tb3+ and Eu3+ probes were prepared and characterized. Two-photon microscopy of live cells was attempted using a commercial microscope with the three probes showing the highest quantum yields (>0.15). A diffuse Ln3+ emission was detected in most cells, which is characteristic of cytosolic delivery of the Ln3+ complex. The cytotoxicity of these three probes was evaluated and the IC50 ranged from 7 µM to >50 µM. The addition of a single positive or negative charge to the antenna of the most cytotoxic compound was sufficient to lower significantly or suppress its toxicity under the conditions used for two-photon microscopy. Therefore, the design reported here provides excellent lanthanide-based probes for two-photon microscopy of living cells.

2.
Conserv Biol ; : e14313, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887868

RESUMEN

Mobile organisms like seabirds can provide important nutrient flows between ecosystems, but this connectivity has been interrupted by the degradation of island ecosystems. Island restoration (via invasive species eradications and the restoration of native vegetation) can reestablish seabird populations and their nutrient transfers between their foraging areas, breeding colonies, and adjacent nearshore habitats. Its diverse benefits are making island restoration increasingly common and scalable to larger islands and whole archipelagos. We identified the factors that influence breeding seabird abundances throughout the Chagos Archipelago in the Indian Ocean and conducted predictive modeling to estimate the abundances of seabirds that the archipelago could support under invasive predator eradication and native vegetation restoration scenarios. We explored whether the prey base exists to support restored seabird populations across the archipelago, calculated the nitrogen that restored populations of seabirds might produce via their guano, and modeled the cascading conservation gains that island restoration could provide. Restoration was predicted to increase breeding pairs of seabirds to over 280,000, and prey was predicted to be ample to support the revived seabird populations. Restored nutrient fluxes were predicted to result in increases in coral growth rates, reef fish biomasses, and parrotfish grazing and bioerosion rates. Given these potential cross-ecosystem benefits, our results support island restoration as a conservation priority that could enhance resilience to climatic change effects, such as sea-level rise and coral bleaching. We encourage the incorporation of our estimates of cross-ecosystem benefits in prioritization exercises for island restoration.


Restauración en islas para reconstruir las poblaciones de aves marinas y amplificar la funcionalidad de los arrecifes de coral Resumen Los organismos móviles como las aves marinas pueden proporcionar flujos importantes de nutrientes entre los ecosistemas, aunque esta conectividad ha sido interrumpida por la degradación de los ecosistemas isleñas. La restauración de islas (por medio de la erradicación de especies invasoras y la restauración de la vegetación nativa) puede reestablecer las poblaciones de aves marinas y su transferencia de nutrientes entre las áreas de forrajeo, las colonias reproductoras y los hábitats adyacentes a la costa. Los diferentes beneficios de la restauración de islas hacen que sea cada vez más común y escalable a islas más grandes y archipiélagos completos. Identificamos los factores que influyen sobre la abundancia de aves reproductoras en todo el archipiélago de Chagos en el Océano Índico y realizamos un modelo predictivo para estimar la abundancia de aves que podría soportar el archipiélago bajo escenarios de la erradicación de un depredador invasor y la restauración de la vegetación nativa. Exploramos si existe la base de presas para soportar las poblaciones restauradas de aves marinas en el archipiélago, calculamos el nitrógeno que las poblaciones restauradas podrían producir mediante el guano y modelamos la conservación en cascada que podría proporcionar la restauración de la isla. Se pronosticó que la restauración incrementaría las parejas reproductoras a más de 280,000 y que las presas serían las suficientes para soportar las poblaciones restauradas de aves marinas. También se pronosticó que los flujos restaurados de nutrientes resultarían en un incremento de la tasa de crecimiento de los corales, la biomasa de los peces del arrecife y las tasas de bio­erosión y de alimentación de los peces loro. Dados estos beneficios potenciales entre los ecosistemas, nuestros resultados respaldan a la restauración de islas como una prioridad de conservación que podría incrementar la resiliencia a los efectos del cambio climático, como el incremento en el nivel del mar y el blanqueamiento de los corales. Promovemos que se incorporen nuestras estimaciones de los beneficios transecosistémicos dentro de los ejercicios de priorización para la restauración de islas.

3.
Phys Chem Chem Phys ; 26(20): 14573-14581, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722087

RESUMEN

The supramolecular interaction between lanthanide complexes and proteins is at the heart of numerous chemical and biological studies. Some of these complexes have demonstrated remarkable interaction properties with proteins or peptides in solution and in the crystalline state. Here we have used the paramagnetism of lanthanide ions to characterize the affinity of two lanthanide complexes for ubiquitin. As the interaction process is dynamic, the acquired NMR data only reflect the time average of the different steps. We have used molecular dynamics (MD) simulations to get a deeper insight into the detailed interaction scenario at the microsecond scale. This NMR/MD approach enabled us to establish that the tris-dipicolinate complex interacts specifically with arginines and lysines, while the crystallophore explores the protein surface through weak interactions with carboxylates. These observations shed new light on the dynamic interaction properties of these complexes, which will ultimately enable us to propose a crystallization mechanism.


Asunto(s)
Elementos de la Serie de los Lantanoides , Simulación de Dinámica Molecular , Ubiquitina , Ubiquitina/química , Elementos de la Serie de los Lantanoides/química , Resonancia Magnética Nuclear Biomolecular , Ácidos Picolínicos/química , Unión Proteica
4.
Chemistry ; 30(38): e202400900, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38738452

RESUMEN

Crystallophores are lanthanide complexes that have demonstrated outstanding induction of crystallization for various proteins. This article explores the effect of tailored modifications of the crystallophore first generation and their impact on the nucleating properties and protein crystal structures. Through high-throughput crystallization experiments and dataset analysis, we evaluated the effectiveness of these variants, in comparison to the first crystallophore generation G1. In particular, the V1 variant, featuring a propanol pendant arm, demonstrated the ability to produce new crystallization conditions for the proteins tested (hen-egg white lysozyme, proteinase K and thaumatin). Structural analysis performed in the case of hen egg-white lysozyme along with Molecular Dynamics simulations, highlights V1's unique behavior, taking advantage of the flexibility of its propanol arm to explore different protein surfaces and form versatile supramolecular interactions.


Asunto(s)
Simulación de Dinámica Molecular , Muramidasa , Muramidasa/química , Muramidasa/metabolismo , Endopeptidasa K/química , Endopeptidasa K/metabolismo , Elementos de la Serie de los Lantanoides/química , Cristalización , Animales , Cristalografía por Rayos X , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pollos , Proteínas/química , Proteínas/metabolismo , Complejos de Coordinación/química
5.
Phys Chem Chem Phys ; 26(21): 15776-15783, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38771627

RESUMEN

Chiral, enantiopure Yb(III) complexes exhibit circularly polarized luminescence (CPL) in the near infrared (NIR) wavelength region. This CPL is quantified by the dissymmetry factor (glum). The excited state 2F5/2 consists of six mJ' states degenerated in three Stark levels, due to the crystal-field splitting (CFS), which are populated in accordance with the Boltzmann distribution. Consequently, room temperature CPL spectra are the sum of various - either positive or negative - contributions, that are practically impossible to quantify. To address this issue, an advanced setup enabling CPL measurements over a broad temperature range (300 to 4 K) has been developed. The interrelation of CFS, glum and temperature was explored using a pair of enantiopure Yb(III) complexes, highlighting the individual contribution of each crystal-field sublevel to the overall CPL spectrum, as anticipated by simulations performed in the framework of multireference wave-functions. Hence, the CPL spectra of chiral lanthanide complexes were found to be indeed strongly temperature-dependent, as is the glum dissymmetry factor, as a consequence of the variation in thermal sublevel population.

6.
Sci Rep ; 14(1): 8184, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589535

RESUMEN

Climate change threatens food security by affecting the productivity of major cereal crops. To date, agroclimatic risk projections through indicators have focused on expected hazards exposure during the crop's current vulnerable seasons, without considering the non-stationarity of their phenology under evolving climatic conditions. We propose a new method for spatially classifying agroclimatic risks for wheat, combining high-resolution climatic data with a wheat's phenological model. The method is implemented for French wheat involving three GCM-RCM model pairs and two emission scenarios. We found that the precocity of phenological stages allows wheat to avoid periods of water deficit in the near future. Nevertheless, in the coming decades the emergence of heat stress and increasing water deficit will deteriorate wheat cultivation over the French territory. Projections show the appearance of combined risks of heat and water deficit up to 4 years per decade under the RCP 8.5 scenario. The proposed method provides a deep level of information that enables regional adaptation strategies: the nature of the risk, its temporal and spatial occurrence, and its potential combination with other risks. It's a first step towards identifying potential sites for breeding crop varieties to increase the resilience of agricultural systems.


Asunto(s)
Cambio Climático , Triticum , Fitomejoramiento , Francia , Agua
7.
Dalton Trans ; 53(19): 8191-8201, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38687018

RESUMEN

The association of lanthanide ions and paracyclophane derivatives has been very scarcely reported in the literature. In this study, elaboration of five coordination lanthanide complexes involving the 1,4(1,4)-dibenzenacyclohexaphane-12,43-diylbis(diphenylphosphine oxide) ligand (L) was achieved with the determination of single-crystal X-ray diffraction structures of four mononuclear complexes of formula [Ln(hfac)3(L)] (hfac- = 1,1,1,5,5,5-hexafluoroacetylacetonate) (Ln = Dy(III) (1-Dy) and Yb(III) (2-Yb)) and [Ln(tta)3(L)] (tta- = 2-tenoyl-trifluoroacetylacetonate) (Ln = Dy(III) (3-Dy) and Yb(III) (4-Yb)) and one dinuclear complex [Na(Dy2(hfac)6(L)2)](BArF) (BArF- = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) (5-Dy). The compounds were characterized using elemental analysis, IR spectroscopy, DC and AC magnetic measurements and photophysical investigations. L is an efficient organic chromophore for the sensitization of both visible Dy(III) (1-Dy) and near-infrared Yb(III) (2-Yb and 4-Yb) luminescence. The combination of excitation and emission spectra allowed the determination of the crystal field spitting of both the 2F7/2 ground state and 2F5/2 excited state for 2-Yb and 4-Yb. Moreover, 3-Dy and the two Yb(III) derivatives displayed field-induced single-molecule magnet (SMM) behaviour with slow magnetic relaxation occurring through the Raman process only for 2-Yb and 4-Yb, whereas a combination of Orbach and Raman processes was identified for 3-Dy.

8.
J Am Chem Soc ; 145(44): 24358-24366, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37869897

RESUMEN

Discrete luminescent lanthanide complexes represent a potential alternative to organic chromophores due to their tunability of optical properties, insensitivity to photobleaching, and large pseudo-Stokes shifts. Previously, we demonstrated that the lack of depth penetration of UV excitation required to sensitize discrete terbium and europium complexes can be overcome using Cherenkov radiation emitted by clinically employed radioisotopes in situ. Here, we show that the second-generation europium complexes [Eu(III)(pcta-PEPA2)] and [Eu(III)(tacn-pic-PEPA2)] (Φ = 57% and 76%, respectively) lower the limit of detection (LoD) to 1 nmol in the presence of 10 µCi of Cherenkov emitting isotopes, 18F and 68Ga. Bifunctionalization provides access to cysteine-linked peptide conjugates with comparable brightness and LoD. The conjugate, [Eu(tacn-(pic-PSMA)-PEPA2)], displays high binding affinity to prostate-specific membrane antigen (PSMA)-expressing PC-3 prostate cancer cells in vitro and can be visualized in the membrane-bound state using confocal microscopy. Biodistribution studies with the [86Y][Y(III)(tacn-(pic-PSMA)-PEPA2)] analogue in a mouse xenograft model were employed to study pharmacokinetics. Systemic administration of the targeted Cherenkov emitter, [68Ga][Ga(III)(PSMA-617)], followed by intratumoral injection or topical application of 20 or 10 nmol [Eu(III)(tacn-(pic-PSMA)-PEPA2)], respectively, in live mice resulted in statistically significant signal enhancement using conventional small animal imaging (620 nm bandpass filter). Optical imaging informed successful tumor resection. Ex vivo imaging of the fixed tumor tissue with 1 and 2 photon excitation further reveals the accumulation of the administered Eu(III) complex in target tissues. This work represents a significant step toward the application of luminescent lanthanide complexes for optical imaging in a clinical setting.


Asunto(s)
Elementos de la Serie de los Lantanoides , Neoplasias , Masculino , Humanos , Animales , Ratones , Europio/química , Luminiscencia , Distribución Tisular , Radioisótopos de Galio , Elementos de la Serie de los Lantanoides/química , Neoplasias/diagnóstico por imagen , Neoplasias/cirugía , Microscopía Confocal
9.
Chem Asian J ; 18(22): e202300756, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37811909

RESUMEN

The rational design of activatable photosensitizers (aPSs) uncaged by specific disease biomarkers is currently booming due to their positive attributes to achieve targeted photodynamic therapy (PDT). In this context, we present here the synthesis and detailed photophysical characterization of a novel class of hetero-rosamine dyes bearing sulfur or selenium as bridging heavy atom and 4-pyridyl meso-substituent as optically tunable group. The main feature of such photoactive platforms is the spectacular change of their spectral properties depending on the caging/decaging status of their 4-pyridyl moiety (cationic pyridinium vs. neutral pyridine). The preparation of two alkaline phosphatase (ALP)-responsive probes (named Valkyrie probes) was achieved through formal N-quaternarization with 4-phosphoryloxybenzyl, the traditional recognition moiety for this important diagnostic enzyme. Bio-analytical validations including fluorescence/singlet oxygen phosphorescence enzyme assays and RP-HPLC-fluorescence/-MS analyses have enabled us to demonstrate the viability and effectiveness of this novel photosensitizer activation strategy. Since sulfur-containing Valkyrie probe also retains high fluorogenicity in the orange-red spectral range, this study highlights meso-pyridyl-substituted S-pyronin scaffolds as valuable candidates for the rapid construction of molecular phototheranostic platforms suitable for combined fluorescence diagnosis and PDT.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Rodaminas , Azufre
10.
PLoS One ; 18(8): e0287570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37611010

RESUMEN

Marine animal biomass is expected to decrease in the 21st century due to climate driven changes in ocean environmental conditions. Previous studies suggest that the magnitude of the decline in primary production on apex predators could be amplified through the trophodynamics of marine food webs, leading to larger decreases in the biomass of predators relative to the decrease in primary production, a mechanism called trophic amplification. We compared relative changes in producer and consumer biomass or production in the global ocean to assess the extent of trophic amplification. We used simulations from nine marine ecosystem models (MEMs) from the Fisheries and Marine Ecosystem Models Intercomparison Project forced by two Earth System Models under the high greenhouse gas emissions Shared Socioeconomic Pathways (SSP5-8.5) and a scenario of no fishing. Globally, total consumer biomass is projected to decrease by 16.7 ± 9.5% more than net primary production (NPP) by 2090-2099 relative to 1995-2014, with substantial variations among MEMs and regions. Total consumer biomass is projected to decrease almost everywhere in the ocean (80% of the world's oceans) in the model ensemble. In 40% of the world's oceans, consumer biomass was projected to decrease more than NPP. Additionally, in another 36% of the world's oceans consumer biomass is expected to decrease even as projected NPP increases. By analysing the biomass response within food webs in available MEMs, we found that model parameters and structures contributed to more complex responses than a consistent amplification of climate impacts of higher trophic levels. Our study provides additional insights into the ecological mechanisms that will impact marine ecosystems, thereby informing model and scenario development.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Estado Nutricional , Clima , Biomasa
11.
Glob Chang Biol ; 29(18): 5250-5260, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409536

RESUMEN

Climate change scenarios suggest that large-scale carbon dioxide removal (CDR) will be required to maintain global warming below 2°C, leading to renewed attention on ocean iron fertilization (OIF). Previous OIF modelling has found that while carbon export increases, nutrient transport to lower latitude ecosystems declines, resulting in a modest impact on atmospheric CO2 . However, the interaction of these CDR responses with ongoing climate change is unknown. Here, we combine global ocean biogeochemistry and ecosystem models to show that, while stimulating carbon sequestration, OIF may amplify climate-induced declines in tropical ocean productivity and ecosystem biomass under a high-emission scenario, with very limited potential atmospheric CO2 drawdown. The 'biogeochemical fingerprint' of climate change, that leads to depletion of upper ocean major nutrients due to upper ocean stratification, is reinforced by OIF due to greater major nutrient consumption. Our simulations show that reductions in upper trophic level animal biomass in tropical regions due to climate change would be exacerbated by OIF within ~20 years, especially in coastal exclusive economic zones (EEZs), with potential implications for fisheries that underpin the livelihoods and economies of coastal communities. Any fertilization-based CDR should therefore consider its interaction with ongoing climate-driven changes and the ensuing ecosystem impacts in national EEZs.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biomasa , Hierro , Dióxido de Carbono/análisis , Océanos y Mares , Fertilización
12.
Chemistry ; 29(49): e202301357, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37272206

RESUMEN

This study presents the synthesis, the spectroscopic and electrochemical properties of new bis- and tetra-substituted azaboron-dipyrromethene (aza-BODIPY) dyes substituted by different electron donating groups connected to the aza-BODIPY core through a thiophene unit. In line with theoretical calculations, experimental measurements point out the positive impact of the thiophene group that behave as a secondary donor group leading to an enhancement of the intramolecular charge transfer process in comparison to previously reported aza-BODIPY dyes. This heterocycle has also been found to tune the oxidative potential and to stabilize the electro-generated species.

13.
J Mater Chem C Mater ; 11(22): 7299-7310, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37304727

RESUMEN

Lanthanide ions have attracted great interest owing to their optical and magnetic properties. Single-molecule magnet (SMM) behavior has been a fascinating science for thirty years. Moreover, chiral lanthanide complexes allow the observation of remarkable circularly polarized luminescence (CPL). However, the combination of both SMM and CPL behaviors in a single molecular system is very rare and deserves attention in the design of multifunctional materials. Four chiral one-dimensional coordination compounds involving 1,1'-Bi-2-naphtol (BINOL)-derived bisphosphate ligands and the Yb(iii) centre were synthesized and characterized by powder and single-crystal X-ray diffraction. All the Yb(iii)-based polymers displayed field-induced SMM behavior with magnetic relaxation occurring by applying Raman processes and near infrared CPL in the solid state.

14.
J Org Chem ; 88(13): 8286-8299, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37273214

RESUMEN

In the past, Lanthanide Luminescent Bioprobes (LLBs) based on pyclen-bearing π-extended picolinate antennas were synthesized and demonstrated well-adapted optical properties for biphotonic microscopy. The objective of this work is to develop a strategy to design bifunctional analogues of the previously studied LLBs presenting an additional reactive chemical group to allow their coupling to biological vectors to reach deep in vivo targeted two-photon bioimaging. Herein, we elaborated a synthetic scheme allowing the introduction of a primary amine on the para position of the macrocyclic pyridine unit. The photophysical and bioimaging studies demonstrate that the introduction of the reactive function does not alter the luminescent properties of the LLBs paving the way for further applications.


Asunto(s)
Técnicas Biosensibles , Elementos de la Serie de los Lantanoides , Elementos de la Serie de los Lantanoides/química , Compuestos de Azabiciclo , Fotones
15.
Nucleic Acids Res ; 51(12): 6264-6285, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37191066

RESUMEN

Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.


Asunto(s)
G-Cuádruplex , Neoplasias , Fotoquimioterapia , Animales , ADN/metabolismo , Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Neoplasias/genética , Neoplasias/terapia , Estrés Oxidativo , Fármacos Fotosensibilizantes/farmacología , Pez Cebra/genética , Pez Cebra/metabolismo , Fotoquimioterapia/métodos
16.
Nat Commun ; 14(1): 1065, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828836

RESUMEN

Circularly polarized luminescence (CPL) is a fast growing research field as a complementary chiroptical spectroscopy alternative to the conventional circular dichroism or in the quest of devices producing circularly polarized light for different applications. Because chiroptical signals are generally lower than 0.1%, conventional chiral spectroscopies rely on polarization time modulation requiring step-by-step wavelength scanning and a long acquisition time. High throughput controls motivated the development of CPL spectrophotometers using cameras as detectors and space polarization splitting. However, CPL measurements imposes careful precautions to minimize the numerous artifacts arising from experimental imperfections. Some previous work used complex calibration procedure to this end. Here we present a rigorous Mueller analysis of an instrument based on polarizations space splitting. We show that by using one camera and combining spatial and temporal separation through two switchable circular polarization encoding arms we can record accurate CPL spectra without the need of any calibration. The measurements robustness and their fast acquisition times are exemplified on different chiral emitters.


Asunto(s)
Luminiscencia , Mediciones Luminiscentes , Dicroismo Circular , Mediciones Luminiscentes/métodos
17.
Inorg Chem ; 62(7): 3106-3115, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36753476

RESUMEN

Facile access to site-selective hetero-lanthanide molecules will open new avenues in the search of novel photophysical phenomena based on Ln-to-Ln' energy transfer (ET). This challenge demands strategies to segregate efficiently different Ln metal ions among different positions in a molecule. We report here the one-step synthesis and structure of a pure [YbNdYb] (1) coordination complex featuring short Yb···Nd distances, ideal to investigate a potential distributive (i.e., from one donor to two acceptors) intramolecular ET from one Nd3+ ion to two Yb3+ centers within a well-characterized molecule. The difference in ionic radius is the mechanism allowing to allocate selectively both types of metal ion within the molecular structure, exploited with the simultaneous use of two ß-diketone-type ligands. To assist the photophysical investigation of this heterometallic species, the analogues [YbLaYb] (2) and [LuNdLu] (3) have also been prepared. Sensitization of Yb3+ and Nd3+ in the last two complexes, respectively, was observed, with remarkably long decay times, facilitating the determination of the Nd-to-Yb ET within the [YbNdYb] composite. This ET was demonstrated by comparing the emission of iso-absorbant solutions of 1, 2, and 3 and through lifetime determinations in solution and solid state. The comparatively high efficiency of this process corroborates the facilitating effect of having two acceptors for the nonradiative decay of Nd3+ created within the [YbNdYb] molecule.

18.
Inorg Chem ; 62(5): 2049-2057, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36680521

RESUMEN

We report a ruthenium(II) bisacetylide complex bearing a photochromic dithienylethene (DTE) acetylide arm and a coordinating bipyridyl on the trans acetylide unit. Its coordination with Yb(TTA)3 centers (TTA = 2-thenoyltrifluoroacetonate) produces a bimetallic complex in which the dithienylethene isomerization is triggered by both ultraviolet (UV) light absorbed by the DTE unit and 450 nm excitation in a transition of the organometallic moiety. The redox behavior arising from the ruthenium(II) bisacetylide system is fully investigated by cyclic voltammetry and spectroelectrochemistry, revealing a lack of stability of the DTE-closed oxidized state preventing effective redox luminescence switching. On the other hand, the photoswitching of ytterbium(III) near-infrared (NIR) emission triggered by the photochromic reaction is fully operational. The electronic structure of this complex in its different states characterized by strong electronic coupling between the DTE and the ruthenium(II)-based moieties leading to metal-assisted photochromic behavior were rationalized with the help of time-dependent density functional theory (TD-DFT) calculations.

19.
Angew Chem Int Ed Engl ; 62(5): e202215558, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36449410

RESUMEN

The combination of physical properties sensitive to molecular chirality in a single system allows the observation of fascinating phenomena such as magneto-chiral dichroism (MChD) and circularly polarized luminescence (CPL) having potential applications for optical data readout and display technology. Homochiral monodimensional coordination polymers of YbIII were designed from a 2,15-bis-ethynyl-hexahelicenic scaffold decorated with two terminal 4-pyridyl units. Thanks to the coordination of the chiral organic chromophore to Yb(hfac)3 units (hfac- =1,1,1,5,5,5-hexafluoroacetylaconate), efficient NIR-CPL activity is observed. Moreover, the specific crystal field around the YbIII induces a strong magnetic anisotropy which leads to a single-molecule magnet (SMM) behaviour and a remarkable room temperature MChD. The MChD-structural correlation is supported by computational investigations.

20.
Glob Chang Biol ; 29(6): 1545-1556, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36516354

RESUMEN

Despite recurrent emphasis on their ecological and economic roles, the importance of high trophic levels (HTLs) on ocean carbon dynamics, through passive (fecal pellet production, carcasses) and active (vertical migration) processes, is still largely unexplored, notably under climate change scenarios. In addition, HTLs impact the ecosystem dynamics through top-down effects on lower trophic levels, which might change under anthropogenic influence. Here we compare two simulations of a global biogeochemical-ecosystem model with and without feedbacks from large marine animals. We show that these large marine animals affect the evolution of low trophic level biomasses, hence net primary production and most certainly ecosystem equilibrium, but seem to have little influence on the 21st-century anthropogenic carbon uptake under the RCP8.5 scenario. These results provide new insights regarding the expectations for trophic amplification of climate change through the marine trophic chain and regarding the necessity to explicitly represent marine animals in Earth System Models.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Retroalimentación , Biomasa , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...