Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36100308

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICI) have radically changed cancer therapy, but most patients with cancer are unresponsive or relapse after treatment. MK-5890 is a CD27 agonist antibody intended to complement ICI therapy. CD27 is a member of the tumor necrosis factor receptor superfamily that plays a critical role in promoting responses of T cells, B cells and NK cells. METHODS: Anti-CD27 antibodies were generated and selected for agonist activity using NF-кB luciferase reporter assays. Antibodies were humanized and characterized for agonism using in vitro T-cell proliferation assays. The epitope recognized on CD27 by MK-5890 was established by X-ray crystallography. Anti-tumor activity was evaluated in a human CD27 knock-in mouse. Preclinical safety was tested in rhesus monkeys. Pharmacodynamic properties were examined in mouse, rhesus monkeys and a phase 1 dose escalation clinical study in patients with cancer. RESULTS: Humanized anti-CD27 antibody MK-5890 (hIgG1) was shown to bind human CD27 on the cell surface with sub-nanomolar potency and to partially block binding to its ligand, CD70. Crystallization studies revealed that MK-5890 binds to a unique epitope in the cysteine-rich domain 1 (CRD1). MK-5890 activated CD27 expressed on 293T NF-κB luciferase reporter cells and, conditional on CD3 stimulation, in purified CD8+ T cells without the requirement of crosslinking. Functional Fc-receptor interaction was required to activate CD8+ T cells in an ex vivo tumor explant system and to induce antitumor efficacy in syngeneic murine subcutaneous tumor models. MK-5890 had monotherapy efficacy in these models and enhanced efficacy of PD-1 blockade. MK-5890 reduced in an isotype-dependent and dose-dependent manner circulating, but not tumor-infiltrating T-cell numbers in these mouse models. In rhesus monkey and human patients, reduction in circulating T cells was transient and less pronounced than in mouse. MK-5890 induced transient elevation of chemokines MCP-1, MIP-1α, and MIP-1ß in the serum of mice, rhesus monkeys and patients with cancer. MK-5890 was well tolerated in rhesus monkeys and systemic exposure to MK-5890 was associated with CD27 occupancy at all doses. CONCLUSIONS: MK-5890 is a novel CD27 agonistic antibody with the potential to complement the activity of PD-1 checkpoint inhibition in cancer immunotherapy and is currently undergoing clinical evaluation.


Asunto(s)
Neoplasias , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Animales , Anticuerpos Monoclonales/uso terapéutico , Recuento de Células , Epítopos , Humanos , Inmunoterapia , Macaca mulatta , Ratones , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1
2.
J Immunother Cancer ; 8(2)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33127658

RESUMEN

BACKGROUND: Programmed cell death protein 1 (PD-1) and CTLA4 combination blockade enhances clinical efficacy in melanoma compared with targeting either checkpoint alone; however, clinical response improvement is coupled with increased risk of developing immune-related adverse events (irAE). Delineating the mechanisms of checkpoint blockade-mediated irAE has been hampered by the lack of animal models that replicate these clinical events. METHODS: We have developed a mouse model of checkpoint blockade-mediated enterocolitis via prolonged administration of an Fc-competent anti-CTLA4 antibody. RESULTS: Sustained treatment with Fc-effector, but not Fc-mutant or Fc-null, anti-CTLA4 antagonist for 7 weeks resulted in enterocolitis. Moreover, combining Fc-null or Fc-mutant CTLA4 antagonists with PD-1 blockade results in potent antitumor combination efficacy indicating that Fc-effector function is not required for combination benefit. CONCLUSION: These data suggest that using CTLA4 antagonists with no Fc-effector function can mitigate gut inflammation associated with anti-CTLA4 antibody therapy yet retain potent antitumor activity in combination with PD-1 blockade.


Asunto(s)
Antígeno CTLA-4/antagonistas & inhibidores , Inflamación/fisiopatología , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Humanos , Ratones
3.
Cancer Res ; 77(5): 1108-1118, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28122327

RESUMEN

Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44hiICOShi intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8+ T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8+ T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. Cancer Res; 77(5); 1108-18. ©2016 AACR.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Neoplasias del Colon/terapia , Proteína Relacionada con TNFR Inducida por Glucocorticoide/inmunología , Depleción Linfocítica/métodos , Melanoma/terapia , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Proteína Relacionada con TNFR Inducida por Glucocorticoide/agonistas , Humanos , Inmunoterapia/métodos , Melanoma/inmunología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
4.
J Pharmacol Exp Ther ; 356(3): 574-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26669426

RESUMEN

Administration of biologics to enhance T-cell function is part of a rapidly growing field of cancer immunotherapy demonstrated by the unprecedented clinical success of several immunoregulatory receptor targeting antibodies. While these biologic agents confer significant anti-tumor activity through targeted immune response modulation, they can also elicit broad immune responses potentially including the production of anti-drug antibodies (ADAs). DTA-1, an agonist monoclonal antibody against GITR, is a highly effective anti-tumor treatment in preclinical models. We demonstrate that repeated dosing with murinized DTA-1 (mDTA-1) generates ADAs with corresponding reductions in drug exposure and engagement of GITR on circulating CD3(+) CD4(+) T cells, due to rapid hepatic drug uptake and catabolism. Mice implanted with tumors after induction of preexisting mDTA-1 ADA show no anti-tumor efficacy when given 3 mg/kg mDTA-1, an efficacious dose in naive mice. Nonetheless, increasing mDTA-1 treatment to 30 mg/kg in ADA-positive mice restores mDTA-1 exposure and GITR engagement on circulating CD3(+) CD4(+) T cells, thereby partially restoring anti-tumor efficacy. Formation of anti-mDTA-1 antibodies and changes in drug exposure and disposition does not occur in GITR(-/-) mice, consistent with a role for GITR agonism in humoral immunity. Finally, the administration of muDX400, a murinized monoclonal antibody against the checkpoint inhibitor PD-1, dosed alone or combined with mDTA-1 did not result in reduced muDX400 exposure, nor did it change the nature of the anti-mDTA-1 response. This indicates that anti-GITR immunogenicity may not necessarily impact the pharmacology of coadministered monoclonal antibodies, supporting combination immunomodulatory strategies.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Antineoplásicos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Proteína Relacionada con TNFR Inducida por Glucocorticoide/agonistas , Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Animales , Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
5.
Cancer Cell ; 20(6): 781-96, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22172723

RESUMEN

Tumor immune surveillance and cancer immunotherapies are thought to depend on the intratumoral infiltration of activated CD8(+) T cells. Intratumoral CD8(+) T cells are rare and lack activity. IL-10 is thought to contribute to the underlying immune suppressive microenvironment. Defying those expectations we demonstrate that IL-10 induces several essential mechanisms for effective antitumor immune surveillance: infiltration and activation of intratumoral tumor-specific cytotoxic CD8(+) T cells, expression of the Th1 cytokine interferon-γ (IFNγ) and granzymes in CD8(+) T cells, and intratumoral antigen presentation molecules. Consequently, tumor immune surveillance is weakened in mice deficient for IL-10 whereas transgenic overexpression of IL-10 protects mice from carcinogenesis. Treatment with pegylated IL-10 restores tumor-specific intratumoral CD8(+) T cell function and controls tumor growth.


Asunto(s)
Interferón gamma/metabolismo , Interleucina-10/metabolismo , Neoplasias Experimentales/inmunología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Linfocitos T CD8-positivos/enzimología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Citotoxicidad Inmunológica , Femenino , Granzimas/metabolismo , Humanos , Interferón gamma/genética , Interleucina-10/genética , Interleucina-10/inmunología , Subunidad alfa del Receptor de Interleucina-10/genética , Subunidad alfa del Receptor de Interleucina-10/metabolismo , Neoplasias Mamarias Experimentales/irrigación sanguínea , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Trasplante de Neoplasias , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Perforina/metabolismo , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Bazo/metabolismo , Trasplante Heterólogo , Carga Tumoral , Escape del Tumor
6.
Infect Immun ; 70(11): 6284-93, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12379707

RESUMEN

Interleukin-10 (IL-10) is thought to promote intracellular infection, including human visceral leishmaniasis, by disabling Th1 cell-type responses and/or deactivating parasitized tissue macrophages. To develop a rationale for IL-10 inhibition as treatment in visceral infection, Th1 cytokine-driven responses were characterized in Leishmania donovani-infected BALB/c mice in which IL-10 was absent or overexpressed or its receptor (IL-10R) was blockaded. IL-10 knockout and normal mice treated prophylactically with anti-IL-10R demonstrated accelerated granuloma assembly and rapid parasite killing without untoward tissue inflammation; IL-12 and gamma interferon mRNA expression, inducible nitric oxide synthase reactivity, and responsiveness to antimony chemotherapy were also enhanced in knockout mice. In IL-10 transgenic mice, parasite replication was unrestrained, and except for antimony responsiveness, measured Th1 cell-dependent events were all initially impaired. Despite subsequent granuloma assembly, high-level infection persisted, and antimony-treated transgenic mice also relapsed. In normal mice with established infection, anti-IL-10R treatment was remarkably active, inducing near-cure by itself and synergism with antimony. IL-10's deactivating effects regulate outcome in experimental visceral leishmaniasis, and IL-10R blockade represents a potential immuno- and/or immunochemotherapeutic approach in this infection.


Asunto(s)
Interleucina-10/fisiología , Leishmania donovani , Leishmaniasis Visceral/terapia , Receptores de Interleucina/antagonistas & inhibidores , Animales , Antimonio/uso terapéutico , Granuloma/patología , Inmunoterapia , Interleucina-12/biosíntesis , Interleucina-4/fisiología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Óxido Nítrico Sintasa/biosíntesis , Óxido Nítrico Sintasa de Tipo II , Receptores de Interleucina-10 , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...