RESUMEN
Swirling spin textures, including topologically nontrivial states, such as skyrmions, chiral domain walls, and magnetic vortices, have garnered significant attention within the scientific community due to their appeal from both fundamental and applied points of view. However, their creation, controlled manipulation, and stability are typically constrained to certain systems with specific crystallographic symmetries, bulk or interface interactions, and/or a precise stacking sequence of materials. Recently, a new approach has shown potential for the imprint of magnetic radial vortices in soft ferromagnetic compounds making use of the stray field of YBa2Cu3O7-δ superconducting microstructures in ferromagnet/superconductor (FM/SC) hybrids at temperatures below the superconducting transition temperature (TC). Here, we explore the lower size limit for the imprint of magnetic radial vortices in square and disc shaped structures as well as the persistence of these spin textures above TC, with magnetic domains retaining partial memory. Structures with circular geometry and with FM patterned to smaller radius than the superconductor island facilitate the imprinting of magnetic radial vortices and improve their stability above TC, in contrast to square structures where the presence of magnetic domains increases the dipolar energy. Micromagnetic modeling coupled with a SC field model reveals that the stabilization mechanism above TC is mediated by microstructural defects. Superconducting control of swirling spin textures, and their stabilization above the superconducting transition temperature by means of defect engineering holds promising prospects for shaping superconducting spintronics based on magnetic textures.
RESUMEN
Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ < 0) enables the accommodation of a virtually unlimited number of antivortices, which suggests their usefulness for non-conventional (e.g., reservoir) computation. Furthermore, complex stray-field topologies around these objects are of interest for superconducting electronics, particle trapping and biomedical applications.
RESUMEN
Magnetic skyrmions are topological spin textures that hold great promise as nanoscale information carriers in non-volatile memory and logic devices. While room-temperature magnetic skyrmions and their current-induced motion were recently demonstrated, the stray field resulting from their finite magnetisation and their topological charge limit their minimum size and reliable motion. Antiferromagnetic skyrmions allow to lift these limitations owing to their vanishing magnetisation and net zero topological charge, promising ultra-small and ultra-fast skyrmions. Here, we report on the observation of isolated skyrmions in compensated synthetic antiferromagnets at zero field and room temperature using X-ray magnetic microscopy. Micromagnetic simulations and an analytical model confirm the chiral antiferromagnetic nature of these skyrmions and allow the identification of the physical mechanisms controlling their size and stability. Finally, we demonstrate the nucleation of synthetic antiferromagnetic skyrmions via local current injection and ultra-fast laser excitation.
RESUMEN
The main origin of the chiral symmetry breaking and, thus, for the magnetochiral effects in magnetic materials is associated with an antisymmetric exchange interaction, the intrinsic Dzyaloshinskii-Moriya interaction (DMI). Recently, numerous inspiring theoretical works predict that the bending of a thin film to a curved surface is often sufficient to induce similar chiral effects. However, these originate from the exchange or magnetostatic interactions and can stabilize noncollinear magnetic structures or influence spin-wave propagation. Here, we demonstrate that curvature-induced chiral effects are experimentally observable rather than theoretical abstraction and are present even in conventional soft ferromagnetic materials. We show that, by measuring the depinning field of domain walls in the simplest possible curve, a flat parabolic stripe, the effective exchange-driven DMI interaction constant can be quantified. Remarkably, its value can be as high as the interfacial DMI constant for thin films and can be tuned by the parabola's curvature.
RESUMEN
We present a new sample holder that is compatible with Photoemission Electron Microscopes (PEEMs) and contains a molecule evaporator. With the integrated low cost evaporator, a local and controlled material deposition in clean ultra-high vacuum conditions can be achieved minimizing the contamination of the analysis chamber. Different molecule systems can easily be studied by exchanging the sample holder. This opens up new possibilities for in-situ investigation of thin film growth by means of spectromicroscopy and element-selective imaging at the nanometer scale. As an example of the performances of the setup, we present a study of the hybrid inorganic/organic system (HIOS) consisting of the organic acceptor molecule 2,2'-(perfluoronaphthalene-2,6-diylidene) dimalononitrile (F6TCNNQ) and ZnO, which is of great interest for novel HIOS-based optoelectronic devices. Here, the ZnO surface work function modification by F6TCNNQ adsorption is investigated in-situ in a spatially resolved manner. In addition, we employ PEEM to selectively probe the chemical state of F6TCNNQ molecules in contact with ZnO (in the first monolayer) and those molecules located in multilayers (in 3D islands).
RESUMEN
In various mineralizing marine organisms, calcite or aragonite crystals form through the initial deposition of amorphous calcium carbonate (ACC) phases with different hydration levels. Using X-ray PhotoEmission Electron spectroMicroscopy (X-PEEM), ACCs with varied spectroscopic signatures were previously identified. In particular, ACC type I and II were recognized in embryonic sea urchin spicules. ACC type I was assigned to hydrated ACC based on spectral similarity with synthetic hydrated ACC. However, the identity of ACC type II has never been unequivocally determined experimentally. In the present study we show that synthetic anhydrous ACC and ACC type II identified here in sea urchin spines, have similar Ca L 2,3-edge spectra. Moreover, using X-PEEM chemical mapping, we revealed the presence of ACC-H2O and anhydrous ACC in growing stereom and septa regions of sea urchin spines, supporting their role as precursor phases in both structures. However, the distribution and the abundance of the two ACC phases differ substantially between the two growing structures, suggesting a variation in the crystal growth mechanism; in particular, ACC dehydration, in the two-step reaction ACC-H2Oâ¯ââ¯ACCâ¯ââ¯calcite, presents different kinetics, which are proposed to be controlled biologically.
RESUMEN
Optical control of magnetization using femtosecond laser without applying any external magnetic field offers the advantage of switching magnetic states at ultrashort time scales. Recently, all-optical helicity-dependent switching (AO-HDS) has drawn a significant attention for potential information and data storage device applications. In this work, we employ element and magnetization sensitive photoemission electron microscopy (PEEM) to investigate the role of heating in AO-HDS for thin films of the rare-earth transition-metal alloy TbFe. Spatially resolved measurements in a 3-5 µm sized stationary laser spot demonstrate that AO-HDS is a local phenomenon in the vicinity of thermal demagnetization in a 'ring' shaped region. The efficiency of AO-HDS further depends on a local temperature profile around the demagnetized region and thermally activated domain wall motion. We also demonstrate that the thickness of the film determines the preferential switching direction for a particular helicity.
RESUMEN
Magnetic skyrmions are topologically protected spin textures that exhibit fascinating physical behaviours and large potential in highly energy-efficient spintronic device applications. The main obstacles so far are that skyrmions have been observed in only a few exotic materials and at low temperatures, and fast current-driven motion of individual skyrmions has not yet been achieved. Here, we report the observation of stable magnetic skyrmions at room temperature in ultrathin transition metal ferromagnets with magnetic transmission soft X-ray microscopy. We demonstrate the ability to generate stable skyrmion lattices and drive trains of individual skyrmions by short current pulses along a magnetic racetrack at speeds exceeding 100 m s(-1) as required for applications. Our findings provide experimental evidence of recent predictions and open the door to room-temperature skyrmion spintronics in robust thin-film heterostructures.
RESUMEN
The reversal of the magnetization under the influence of a field pulse has been previously predicted to be an incoherent process with several competing phenomena such as domain wall relaxation, spin wave-mediated instability regions, and vortex-core mediated reversal dynamics. However, there has been no study on the direct observation of the switching process with the aid of a microwave signal input. We report a time-resolved imaging study of magnetization reversal in patterned magnetic structures under the influence of a field pulse with microwave assistance. The microwave frequency is varied to demonstrate the effect of resonant microwave-assisted switching. We observe that the switching process is dominated by spin wave dynamics generated as a result of magnetic instabilities in the structures, and identify the frequencies that are most dominant in magnetization reversal.
RESUMEN
The study of magnetic domain walls in constrained geometries is an important topic, yet when dealing with extreme nanoscale magnetic systems artefacts can often dominate the measurements and obscure the effects of intrinsic magnetic origin. In this work we study the evolution of domain wall depinning in electromigrated ferromagnetic junctions which are both initially fabricated and subsequently tailored in-situ in clean ultra-high vacuum conditions. Carefully designed Ni(80)Fe(20) (Permalloy) notched half-ring structures are fabricated and investigated as a function of constriction width by tailoring the size of the contact using controlled in-situ electromigration. It is found that the domain wall pinning strength is increased on reducing the contact size in line with a reduction of the wall energy in narrower constrictions. Furthermore, the angular dependency and symmetry of the depinning field is measured to determine the full pinning potential for a domain wall in a system with a narrow constriction.
RESUMEN
Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent widespread use in devices. Here we demonstrate a radically different approach: we use out-of-plane magnetic field pulses to move in-plane domains, thus combining field-induced magnetization dynamics with the ability to move neighbouring domain walls in the same direction. Micromagnetic simulations suggest that synchronous permanent displacement of multiple magnetic walls can be achieved by using transverse domain walls with identical chirality combined with regular pinning sites and an asymmetric pulse. By performing scanning transmission X-ray microscopy, we are able to experimentally demonstrate in-plane magnetized domain wall motion due to out-of-plane magnetic field pulses.
RESUMEN
Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the extrinsic pinning from imperfections in the nanowire only affects slow domain walls and we identify the magnetostatic energy, which scales with the domain wall velocity, as the energy reservoir for the domain wall to overcome the local pinning potential landscape.