Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7806, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179410

RESUMEN

Biobanks containing formalin-fixed, paraffin-embedded (FFPE) tissues from animals and human atomic-bomb survivors exposed to radioactive particulates remain a vital resource for understanding the molecular effects of radiation exposure. These samples are often decades old and prepared using harsh fixation processes which limit sample imaging options. Optical imaging of hematoxylin and eosin (H&E) stained tissues may be the only feasible processing option, however, H&E images provide no information about radioactive microparticles or radioactive history. Synchrotron X-ray fluorescence microscopy (XFM) is a robust, non-destructive, semi-quantitative technique for elemental mapping and identifying candidate chemical element biomarkers in FFPE tissues. Still, XFM has never been used to uncover distribution of formerly radioactive micro-particulates in FFPE canine specimens collected more than 30 years ago. In this work, we demonstrate the first use of low-, medium-, and high-resolution XFM to generate 2D elemental maps of ~ 35-year-old, canine FFPE lung and lymph node specimens stored in the Northwestern University Radiobiology Archive documenting distribution of formerly radioactive micro-particulates. Additionally, we use XFM to identify individual microparticles and detect daughter products of radioactive decay. The results of this proof-of-principle study support the use of XFM to map chemical element composition in historic FFPE specimens and conduct radioactive micro-particulate forensics.


Asunto(s)
Pulmón , Sincrotrones , Humanos , Animales , Perros , Adulto , Fijación del Tejido , Rayos X , Microscopía Fluorescente/métodos , Adhesión en Parafina , Formaldehído/química
2.
J Med Imaging (Bellingham) ; 9(3): 031504, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35127969

RESUMEN

Purpose: Tomography using diffracted x-rays produces reconstructions mapping quantities such as crystal lattice parameter(s), crystallite size, and crystallographic texture, information quite different from that obtained with absorption or phase contrast. Diffraction tomography is used to map an entire blue shark centrum with its double cone structure (corpora calcerea) and intermedialia (four wedges). Approach: Energy dispersive diffraction (EDD) and polychromatic synchrotron x-radiation at 6-BM-B, the Advanced Photon Source, were used. Different, properly oriented Bragg planes diffract different x-ray energies; these intensities are measured by one of ten energy-sensitive detectors. A pencil beam defines the irradiated volume, and a collimator before each energy-sensitive detector selects which portion of the irradiated column is sampled at any one time. Translating the specimen along X , Y , and Z axes produces a 3D map. Results: We report 3D maps of the integrated intensity of several bioapatite reflections from the mineralized cartilage centrum of a blue shark. The c axis reflection's integrated intensities and those of a reflection with no c axis component reveal that the cone wall's bioapatite is oriented with its c axes lateral, i.e., perpendicular to the backbone's axis, and that the wedges' bioapatite is oriented with its c axes axial. Absorption microcomputed tomography (laboratory and synchrotron) and x-ray excited x-ray fluorescence maps provide higher resolution views. Conclusion: The bioapatite in the cone walls and wedges is oriented to resist lateral and axial deflections, respectively. Mineralized tissue samples can be mapped in 3D with EDD tomography and subsequently studied by destructive methods.

3.
Front Public Health ; 9: 711506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490194

RESUMEN

Introduction: TheraSphere® microspheres containing yttrium 90Y are among many radioembolization agents used clinically to reduce liver tumor burden, and their effects on cancer volume reduction are well-established. At the same time, concerns about off target tissue injury often limit their use. Deeper investigation into tissue distribution and long-term impact of these microspheres could inform us about additional ways to use them in practice. Methods: Healthy rat liver and rabbit liver tumor samples from animals treated with TheraSpheres were sectioned and their elemental maps were generated by X-ray fluorescence microscopy (XFM) at the Advanced Photon Source (APS) synchrotron at Argonne National Laboratory (ANL). Results: Elemental imaging allowed us to identify the presence and distribution of TheraSpheres in animal tissues without the need for additional sample manipulation or staining. Ionizing radiation produced by 90Y radioactive contaminants present in these microspheres makes processing TheraSphere treated samples complex. Accumulation of microspheres in macrophages was observed. Conclusions: This is the first study that used XFM to evaluate the location of microspheres and radionuclides in animal liver and tumor samples introduced through radioembolization. XFM has shown promise in expanding our understanding of radioembolization and could be used for investigation of human patient samples in the future.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/radioterapia , Humanos , Neoplasias Hepáticas/radioterapia , Microscopía Fluorescente , Conejos , Rayos X , Radioisótopos de Itrio
4.
ACS Appl Mater Interfaces ; 13(33): 39042-39054, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34375073

RESUMEN

In developing a cluster-nanocarrier design, as a magnetic resonance imaging contrast agent, we have investigated the enhanced relaxivity of a manganese and iron-oxo cluster grafted within a porous polystyrene nanobead with increased relaxivity due to a higher surface area. The synthesis of the cluster-nanocarrier for the cluster Mn8Fe4O12(O2CC6H4CH═CH2)16(H2O)4, cross-linked with polystyrene (the nanocarrier), under miniemulsion conditions is described. By including a branched hydrophobe, iso-octane, the resulting nanobeads are porous and ∼70 nm in diameter. The increased surface area of the nanobeads compared to nonporous nanobeads leads to an enhancement in relaxivity; r1 increases from 3.8 to 5.2 ± 0.1 mM-1 s-1, and r2 increases from 11.9 to 50.1 ± 4.8 mM-1 s-1, at 9.4 teslas, strengthening the potential for T1 and T2 imaging. Several metrics were used to assess stability, and the porosity produced no reduction in metal stability. Synchrotron X-ray fluorescence microscopy was used to demonstrate that the nanobeads remain intact in vivo. In depth, physicochemical characteristics were determined, including extensive pharmacokinetics, in vivo imaging, and systemic biodistribution analysis.


Asunto(s)
Materiales Biocompatibles/química , Medios de Contraste/química , Hierro/química , Manganeso/química , Nanopartículas/química , Compuestos Organometálicos/química , Poliestirenos/química , Animales , Materiales Biocompatibles/farmacocinética , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/farmacocinética , Reactivos de Enlaces Cruzados/química , Humanos , Imagen por Resonancia Magnética , Ratones Endogámicos BALB C , Imagen Multimodal , Porosidad , Espectrometría por Rayos X , Distribución Tisular
5.
Nano Lett ; 21(14): 5945-5951, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34251215

RESUMEN

Strain is known to enhance the activity of the oxygen reduction reaction in catalytic platinum alloy nanoparticles, whose inactivity is the primary impediment to efficient fuel cells and metal-air batteries. Bragg coherent diffraction imaging (BCDI) was employed to reveal the strain evolution during the voltammetric cycling in Pt-Ni alloy nanoparticles composed of Pt2Ni3, Pt1Ni1, and Pt3Ni2. Analysis of the 3D strain images using a core-shell model shows that the strain as large as 5% is induced on Pt-rich shells due to Ni dissolution. The composition dependency of the strain on the shells is in excellent agreement with that of the catalytic activity. The present study demonstrates that BCDI enables quantitative determination of the strain on alloy nanoparticles during electrochemical reactions, which provides a means to exploit surface strain to design a wide range of electrocatalysts.


Asunto(s)
Aleaciones , Nanopartículas , Catálisis , Oxidación-Reducción , Platino (Metal)
6.
Sci Rep ; 10(1): 19550, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177558

RESUMEN

X-ray ptychography is a rapidly developing coherent diffraction imaging technique that provides nanoscale resolution on extended field-of-view. However, the requirement of coherence and the scanning mechanism limit the throughput of ptychographic imaging. In this paper, we propose X-ray ptychography using multiple illuminations instead of single illumination in conventional ptychography. Multiple locations of the sample are simultaneously imaged by spatially separated X-ray beams, therefore, the obtained field-of-view in one scan can be enlarged by a factor equal to the number of illuminations. We have demonstrated this technique experimentally using two X-ray beams focused by a house-made Fresnel zone plate array. Two areas of the object and corresponding double illuminations were successfully reconstructed from diffraction patterns acquired in one scan, with image quality similar with those obtained by conventional single-beam ptychography in sequence. Multi-beam ptychography approach increases the imaging speed, providing an efficient way for high-resolution imaging of large extended specimens.

7.
Sci Rep ; 9(1): 16965, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31740720

RESUMEN

Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) is biologically distinct from HPV-negative HNSCC. Outside of HPV-status, few tumor-intrinsic variables have been identified that correlate to improved survival. As part of exploratory analysis into the trace elemental composition of oropharyngeal squamous cell carcinoma (OPSCC), we performed elemental quanitification by X-ray fluorescence microscopy (XFM) on a small cohort (n = 32) of patients with HPV-positive and -negative OPSCC and identified in HPV-positive cases increased zinc (Zn) concentrations in tumor tissue relative to normal tissue. Subsequent immunohistochemistry of six Zn-binding proteins-zinc-α2-glycoprotein (AZGP1), Lipocalin-1, Albumin, S100A7, S100A8 and S100A9-revealed that only AZGP1 expression significantly correlated to HPV-status (p < 0.001) and was also increased in tumor relative to normal tissue from HPV-positive OPSCC tumor samples. AZGP1 protein expression in our cohort significantly correlated to a prolonged recurrence-free survival (p = 0.029), similar to HNSCC cases from the TCGA (n = 499), where highest AZGP1 mRNA levels correlated to improved overall survival (p = 0.023). By showing for the first time that HPV-positive OPSCC patients have increased intratumoral Zn levels and AZGP1 expression, we identify possible positive prognostic biomarkers in HNSCC as well as possible mechanisms of increased sensitivity to chemoradiation in HPV-positive OPSCC.


Asunto(s)
Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/metabolismo , Proteínas de Plasma Seminal/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Zinc/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Femenino , Humanos , Lipocalina 1/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/mortalidad , Proteína A7 de Unión a Calcio de la Familia S100/metabolismo , Proteínas de Plasma Seminal/genética , Espectrometría por Rayos X , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Zn-alfa-2-Glicoproteína
8.
J Vis Exp ; (145)2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30907876

RESUMEN

The locus coeruleus (LC) is a major hub of norepinephrine producing neurons that modulate a number of physiological functions. Structural or functional abnormalities of LC impact several brain regions including cortex, hippocampus, and cerebellum and may contribute to depression, bipolar disorder, anxiety, as well as Parkinson disease and Alzheimer disease. These disorders are often associated with metal misbalance, but the role of metals in LC is only partially understood. Morphologic and functional studies of LC are needed to better understand the human pathologies and contribution of metals. Mice are a widely used experimental model, but the mouse LC is small (~0.3 mm diameter) and hard to identify for a non-expert. Here, we describe a step-by-step immunohistochemistry-based protocol to localize the LC in the mouse brain. Dopamine-ß-hydroxylase (DBH), and alternatively, tyrosine hydroxylase (TH), both enzymes highly expressed in the LC, are used as immunohistochemical markers in brain slices. Sections adjacent to LC-containing sections can be used for further analysis, including histology for morphological studies, metabolic testing, as well as metal imaging by X-ray fluorescence microscopy (XFM).


Asunto(s)
Locus Coeruleus/anatomía & histología , Animales , Tronco Encefálico/anatomía & histología , Dopamina beta-Hidroxilasa/metabolismo , Humanos , Imagenología Tridimensional , Masculino , Metales/metabolismo , Ratones , Tirosina 3-Monooxigenasa/metabolismo
9.
J Synchrotron Radiat ; 26(Pt 1): 220-229, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655488

RESUMEN

Bragg coherent X-ray diffraction imaging has become valuable for visualization of the structural, morphological and strain evolution of crystals in operando electrode materials. As the electrode material particles (either in a single-crystal form or an aggregation form of single crystals) are evenly dispersed and randomly oriented in the electrode laminate, the submicrometer-sized coherentX-ray beam can be used to probe the local properties of electrode material crystals using two approaches. Coherent multi-crystal diffraction provides collective structural information of phase transitions in tens of crystals simultaneously as well as the individual behavior from single crystals, which are oriented at the Bragg condition in the X-ray illumination volume. Bragg coherent diffractive imaging enables one to monitor the evolution of the morphology and strain in individual crystals. This work explores and highlights the Bragg coherent X-ray diffraction measurements of battery electrode materials in operando conditions at the 34-ID-C beamline at the Advanced Photon Source. The experiment is demonstrated with NaNi1/3Fe1/3Mn1/3O2, a sodium-ion cathode material loaded in a half cell. The paper will discuss, in detail, the beamline setup, sample mounting and handling, alignment strategies and the data acquisition protocols.

10.
Phys Rev Lett ; 123(24): 246001, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31922849

RESUMEN

Bimetallic catalysts can undergo segregation or redistribution of the metals driven by oxidizing and reducing environments. Bragg coherent diffraction imaging (BCDI) was used to relate displacement fields to compositional distributions in crystalline Pt-Rh alloy nanoparticles. Three-dimensional images of internal composition showed that the radial distribution of compositions reverses partially between the surface shell and the core when gas flow changes between O_{2} and H_{2}. Our observation suggests that the elemental segregation of nanoparticle catalysts should be highly active during heterogeneous catalysis and can be a controlling factor in synthesis of electrocatalysts. In addition, our study exemplifies applications of BCDI for in situ 3D imaging of internal equilibrium compositions in other bimetallic alloy nanoparticles.

11.
Nanoscale Adv ; 1(8): 3009-3014, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36133615

RESUMEN

The chemical properties of materials are dependent on dynamic changes in their three-dimensional (3D) structure as well as on the reactive environment. We report an in situ 3D imaging study of defect dynamics of a single gold nanocrystal. Our findings offer an insight into its dynamic nanostructure and unravel the formation of a nanotwin network under CO oxidation conditions. In situ/operando defect dynamics imaging paves the way to elucidate chemical processes at the single nano-object level towards defect-engineered nanomaterials.

12.
Nat Commun ; 9(1): 3776, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224669

RESUMEN

The nucleation and propagation of dislocations is an ubiquitous process that accompanies the plastic deformation of materials. Consequently, following the first visualization of dislocations over 50 years ago with the advent of the first transmission electron microscopes, significant effort has been invested in tailoring material response through defect engineering and control. To accomplish this more effectively, the ability to identify and characterize defect structure and strain following external stimulus is vital. Here, using X-ray Bragg coherent diffraction imaging, we describe the first direct 3D X-ray imaging of the strain field surrounding a line defect within a grain of free-standing nanocrystalline material following tensile loading. By integrating the observed 3D structure into an atomistic model, we show that the measured strain field corresponds to a screw dislocation.

13.
Nat Commun ; 9(1): 3422, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143615

RESUMEN

High catalytic efficiency in metal nanocatalysts is attributed to large surface area to volume ratios and an abundance of under-coordinated atoms that can decrease kinetic barriers. Although overall shape or size changes of nanocatalysts have been observed as a result of catalytic processes, structural changes at low-coordination sites such as edges, remain poorly understood. Here, we report high-lattice distortion at edges of Pt nanocrystals during heterogeneous catalytic methane oxidation based on in situ 3D Bragg coherent X-ray diffraction imaging. We directly observe contraction at edges owing to adsorption of oxygen. This strain increases during methane oxidation and it returns to the original state after completing the reaction process. The results are in good agreement with finite element models that incorporate forces, as determined by reactive molecular dynamics simulations. Reaction mechanisms obtained from in situ strain imaging thus provide important insights for improving catalysts and designing future nanostructured catalytic materials.

14.
Eur J Pharm Sci ; 103: 85-93, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28263913

RESUMEN

We employed a recently introduced class of sterol-modified lipids (SML) to produce m-PEG-DSPE containing liposome compositions with a range of cis-platinum content release rates. SML have a cholesterol succinate attached to the phosphatidylglycerol head group and a fatty acid at the 2 position. These compositions were compared to the well-studied liposome phospholipid compositions: mPEG-DSPE/Hydrogenated Soy PC/cholesterol or mPEG-DSPE/POPC/cholesterol to determine the effect of the cis-platinum release extent on C26 tumor proliferation in the BALB/c colon carcinoma mouse model. The release rates of cis-platinum from liposomes composed of SML are a function of the acyl chain length. SML-liposomes with shorter acyl chain lengths C-8 provided more rapid cisplatin release, lower in vitro IC50, and were easier to formulate compared to liposomes using traditional phospholipid compositions. Similar to other liposome cis-platinum formulations, the half-life of m-PEG-DSPE SML liposome cisplatin is substantially longer than the free drug. This resulted in a higher tumor cisplatin concentration at 48h post-dosing compared to the free drug and higher Pt-DNA adducts in the tumor. Moreover, the maximum tolerated dose of the liposome formulations where up to four fold greater than the free drug. Using X-ray fluorescence spectroscopy on tumor sections, we compared the location of platinum, to the location of a fluorescence lipid incorporated in the liposomes. The liposome platinum co-localized with the fluorescent lipid and both were non-uniformly distributed in the tumor. Non-encapsulated Cis-platinum, albeit at a low concentration, was more uniformly distributed thorough the tumor. Three liposome formulations, including the well-studied hydrogenated HSPC composition, had better antitumor activity in the murine colon 26 carcinoma model as compared to the free drug at the same dose but the SML liposome platinum formulations did not perform better than the HSPC formulation.


Asunto(s)
Antineoplásicos/administración & dosificación , Colesterol/química , Cisplatino/administración & dosificación , Fosfolípidos/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/química , Cisplatino/farmacología , Neoplasias del Colon/tratamiento farmacológico , Preparaciones de Acción Retardada , Femenino , Semivida , Humanos , Liposomas , Dosis Máxima Tolerada , Ratones Endogámicos BALB C , Distribución Tisular
15.
Xray Spectrom ; 46(1): 19-26, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32863464

RESUMEN

Lead (Pb) exposure is known to be associated with adverse effects on human health, especially during the prenatal period and early childhood. The Pb content in teeth has been suggested as a useful biomarker for the evaluation of cumulative Pb exposure. This study was designed to employ the microbeam synchrotron radiation X-ray fluorescence technique to determine the microdistribution of Pb within the tooth to evaluate the reliability of the technique and the effectiveness of tooth Pb as a biomarker of Pb exposure. The results showed that in the incisor sample, Pb primarily deposited in secondary dentine region close to the pulp and secondarily at enamel exterior. In addition, Pb colocalised with Zn, indicating a positive correlation between Pb and Zn. By contrast,in the two molar samples, Pb accumulated principally in the pulp, and secondarily in the enamel. At the same time, Pb in these two molar samples colocalised with Ca instead of Zn as was observed in the incisor sample. Several batches of line scans further confirmed the conclusions. The feasibility of using microbeam synchrotron radiation X-ray fluorescence to determine the microdistribution of Pb in teeth and of using the tooth Pb, especially in dentine, as a biomarker was discussed.

16.
Appl Spectrosc ; 70(10): 1759-1769, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27530128

RESUMEN

Archeological ceramic paste material typically consists of a mix of a clay matrix and various millimeter and sub-millimeter sized mineral inclusions. Micro X-ray fluorescence (XRF) is a standard compositional classification tool and in this work we propose and demonstrate an improved fluorescence map processing protocol where the mineral inclusions are automatically separated from the clay matrix to allow independent statistical analysis of the two parts. Application of this protocol allowed us to enhance the discrimination between different ceramic shards compared with the standard procedure of working with only the spatially averaged elemental concentrations. Using the new protocol, we performed an initial compositional classification of a set of 83 ceramic shards from the western slopes of the south central Andean region in the Arica y Parinacota region (Chile). Comparing the classifications obtained using the new versus the old (average concentrations only) protocols, we found that some samples were erroneously classified with the old protocol. From an archaeological perspective, a broad and heterogeneous regional sample set was used in this experimental study due to the fact that this was the first such analysis to be performed on ceramics from this region. This allowed a general overview to be obtained, however further work on more specific sample sets will be necessary to extract concrete archaeological conclusions.

17.
J Phys Chem Lett ; 7(15): 3008-13, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27429219

RESUMEN

Multielectron transfer processes are crucially important in energy and biological science but require favorable catalysts to achieve fast kinetics. Nanostructuring catalysts can dramatically improve their properties, which can be difficult to understand due to strain- and size-dependent thermodynamics, the influence of defects, and substrate-dependent activities. Here, we report three-dimensional (3D) imaging of single gold nanoparticles during catalysis of ascorbic acid decomposition using Bragg coherent diffractive imaging (BCDI). Local strains were measured in single nanoparticles and modeled using reactive molecular dynamics (RMD) simulations and finite element analysis (FEA) simulations. RMD reveals the pathway for local strain generation in the gold lattice: chemisorption of hydroxyl ions. FEA reveals that the RMD results are transferable to the nanocrystal sizes studied in the experiment. Our study probes the strain-activity connection and opens a powerful avenue for theoretical and experimental studies of nanocrystal catalysis.

18.
Nanomaterials (Basel) ; 6(8)2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28335271

RESUMEN

This work compares intravenous (IV) versus fluoroscopy-guided transarterial intra-catheter (IC) delivery of iron oxide core-titanium dioxide shell nanoparticles (NPs) in vivo in VX2 model of liver cancer in rabbits. NPs coated with glucose and decorated with a peptide sequence from cortactin were administered to animals with developed VX2 liver cancer. Two hours after NPs delivery tumors, normal liver, kidney, lung and spleen tissues were harvested and used for a series on histological and elemental analysis tests. Quantification of NPs in tissues was done both by bulk inductively coupled plasma mass spectrometry (ICP-MS) analysis and by hard X-ray fluorescence microscopy. Both IV and IC NPs injection are feasible modalities for delivering NPs to VX2 liver tumors with comparable tumor accumulation. It is possible that this is an outcome of the fact that VX2 tumors are highly vascularized and hemorrhagic, and therefore enhanced permeability and retention (EPR) plays the most significant role in accumulation of nanoparticles in tumor tissue. It is, however, interesting to note that IV delivery led to increased sequestration of NPs by spleen and normal liver tissue, while IC delivery lead to more NP positive Kupffer cells. This difference is most likely a direct outcome of blood flow dynamics. Armed with this knowledge about nanoparticle delivery, we plan to test them as radiosensitizers in the future.

19.
J Synchrotron Radiat ; 21(Pt 4): 662-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24971959

RESUMEN

The micro-focusing performance for hard X-rays of a fixed-geometry elliptical Kirkpatrick-Baez (K-B) mirrors assembly fabricated, tested and finally implemented at the micro-probe beamline 8-BM of the Advanced Photon Source is reported. Testing of the K-B mirror system was performed at the optics and detector test beamline 1-BM. K-B mirrors of length 80 mm and 60 mm were fabricated by profile coating with Pt metal to produce focal lengths of 250 mm and 155 mm for 3 mrad incident angle. For the critical angle of Pt, a broad bandwidth of energies up to 20 keV applies. The classical K-B sequential mirror geometry was used, and mirrors were mounted on micro-translation stages. The beam intensity profiles were measured by differentiating the curves of intensity data measured using a wire-scanning method. A beam size of 1.3 µm (V) and 1.2 µm (H) was measured with monochromatic X-rays of 18 keV at 1-BM. After installation at 8-BM the measured focus met the design requirements. In this paper the fabrication and metrology of the K-B mirrors are reported, as well as the focusing performances of the full mirrors-plus-mount set-up at both beamlines.

20.
Methods Mol Biol ; 1122: 171-87, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24639260

RESUMEN

Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.


Asunto(s)
Metaloproteínas/análisis , Espectroscopía de Absorción de Rayos X/métodos , Animales , Bovinos , Caballos , Electroforesis en Gel de Poliacrilamida Nativa , Conejos , Espectrometría por Rayos X , Estadística como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...