Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Commun ; 14(1): 2062, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045816

RESUMEN

Membrane electrode assemblies enable CO2 electrolysis at industrially relevant rates, yet their operational stability is often limited by formation of solid precipitates in the cathode pores, triggered by cation crossover from the anolyte due to imperfect ion exclusion by anion exchange membranes. Here we show that anolyte concentration affects the degree of cation movement through the membranes, and this substantially influences the behaviors of copper catalysts in catholyte-free CO2 electrolysers. Systematic variation of the anolyte (KOH or KHCO3) ionic strength produced a distinct switch in selectivity between either predominantly CO or C2+ products (mainly C2H4) which closely correlated with the quantity of alkali metal cation (K+) crossover, suggesting cations play a key role in C-C coupling reaction pathways even in cells without discrete liquid catholytes. Operando X-ray absorption and quasi in situ X-ray photoelectron spectroscopy revealed that the Cu surface speciation showed a strong dependence on the anolyte concentration, wherein dilute anolytes resulted in a mixture of Cu+ and Cu0 surface species, while concentrated anolytes led to exclusively Cu0 under similar testing conditions. These results show that even in catholyte-free cells, cation effects (including unintentional ones) significantly influence reaction pathways, important to consider in future development of catalysts and devices.

2.
Sleep ; 46(8)2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37026184

RESUMEN

STUDY OBJECTIVES: We examined the impact of adding a single-high-melanopic-illuminance task lamp in an otherwise low-melanopic-illuminance environment on alertness, neurobehavioral performance, learning, and mood during an 8-h simulated workday. METHODS: Sixteen healthy young adults [mean(±SD) age = 24.2 ± 2.9, 8F] participated in a 3-day inpatient study with two 8-h simulated workdays and were randomized to either ambient fluorescent room light (~30 melanopic EDI lux, 50 lux), or room light supplemented with a light emitting diode task lamp (~250 melanopic EDI lux, 210 lux) in a cross-over design. Alertness, mood, and cognitive performance were assessed throughout the light exposure and compared between conditions using linear mixed models. RESULTS: The primary outcome measure of percentage correct responses on the addition task was significantly improved relative to baseline in the supplemented condition (3.15% ± 1.18%), compared to the ambient conditions (0.93% ± 1.1%; FDR-adj q = 0.005). Additionally, reaction time and attentional failures on the psychomotor vigilance tasks were significantly improved with exposure to supplemented compared to ambient lighting (all, FDR-adj q ≤ 0.030). Furthermore, subjective measures of sleepiness, alertness, happiness, health, mood, and motivation were also significantly better in the supplemented, compared to ambient conditions (all, FDR-adj q ≤ 0.036). There was no difference in mood disturbance, affect, declarative memory, or motor learning between the conditions (all, FDR-adj q ≥ 0.308). CONCLUSIONS: Our results show that supplementing ambient lighting with a high-melanopic-illuminance task lamp can improve daytime alertness and cognition. Therefore, high-melanopic-illuminance task lighting may be effective when incorporated into existing suboptimal lighting environments. CLINICAL TRIALS: NCT04745312. Effect of Lighting Supplementation on Daytime Cognition. https://clinicaltrials.gov/ct2/show/NCT04745312.


Asunto(s)
Iluminación , Vigilia , Adulto Joven , Humanos , Cognición , Suplementos Dietéticos , Sueño
3.
J Colloid Interface Sci ; 637: 408-420, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36716665

RESUMEN

Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs' internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 âˆ¼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products.

4.
Adv Mater ; 35(3): e2207932, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36284477

RESUMEN

Lithium fluorinated-carbon (Li/CFx ) is one of the most promising chemistries for high-energy-density primary energy-storage systems in applications where rechargeability is not required. Though Li/CFx demonstrates high energy density (>2100 Wh kg-1 ) under ambient conditions, achieving such a high energy density when exposed to subzero temperatures remains a challenge, particularly under high current density. Here, a liquefied gas electrolyte with an anion-pair solvation structure based on dimethyl ether with a low melting point (-141 °C) and low viscosity (0.12 mPa s, 20 °C), leading to high ionic conductivity (>3.5 mS cm-1 ) between -70 and 60 °C is reported. Besides that, through systematic X-ray photoelectron spectroscopy integrated with transmission electron microscopy characterizations, the interface of CFx is evaluated for low-temperature performance. The fast transport and anion-pairing solvation structure of the electrolyte are concluded to bring about reduced charge-transfer resistance at low temperatures, which results in significantly enhanced performance of Li/CFx cells (1690 Wh kg-1 , -60 °C based on active materials). Utilizing 50 mg cm-2 loading electrodes, the Li/CFx still displays 1530 Wh kg-1 at -60 °C. This work provides insights into the electrolyte design that may overcome the operational limits of batteries in extreme environments.

5.
PLoS Negl Trop Dis ; 16(11): e0010685, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367878

RESUMEN

BACKGROUND: Fever is a common presenting symptom in low- and middle-income countries (LMICs). It was previously assumed that malaria was the cause in such patients, but its incidence has declined rapidly. The urgent need to develop point-of-care tests for the most important causes of non-malarial acute febrile illness is hampered by the lack of robust epidemiological data. We sought to obtain expert consensus on analytes which should be prioritized for inclusion in fingerprick blood-based multiplex lateral flow rapid diagnostic tests (LF-RDTs) targeted towards four categories of patients with acute non-malarial fever in South and Southeast Asian LMICs, stratified by age (paediatric vs. adult) and care setting (primary vs. secondary care). METHODOLOGY/PRINCIPAL FINDINGS: We conducted a two-round modified e-Delphi survey. A total of 84 panellists were invited, consisting of seven each from 12 countries, divided into three regional panels (Mainland Southeast Asia, Maritime Southeast Asia, and South Asia). Panellists were asked to rank their top seven analytes for inclusion in LF-RDTs to be used in each patient category, justify their choices, and indicate whether such LF-RDTs should be incorporated into algorithm-based clinical decision support tools. Thirty-six panellists (43%) participated in the first round and 44 (52%) in the second. There was consensus that such LF-RDTs should be incorporated into clinical decision support tools. At a minimum, these LF-RDTs should be able to diagnose dengue and enteric fever in all patient categories. There was a clear preference to develop LF-RDTs for pathogens not readily detected by existing technologies, and for direct diagnosis through antigen detection. Pathogen biomarkers were prioritized over host inflammatory biomarkers, with CRP being the only one ranked consistently highly. CONCLUSIONS/SIGNIFICANCE: Our results provide guidance on prioritizing analytes for inclusion in context-specific multiplex LF-RDTs and similar platforms for non-malarial acute febrile illness, for which there is an urgent unmet need.


Asunto(s)
Pruebas Diagnósticas de Rutina , Malaria , Adulto , Niño , Humanos , Pruebas Diagnósticas de Rutina/métodos , Malaria/epidemiología , Fiebre/diagnóstico , Fiebre/etiología , Asia Sudoriental
6.
ACS Catal ; 12(24): 15576-15589, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36590316

RESUMEN

To address the challenge of selectivity toward single products in Cu-catalyzed electrochemical CO2 reduction, one strategy is to incorporate a second metal with the goal of tuning catalytic activity via synergy effects. In particular, catalysts based on Cu modified with post-transition metals (Sn or In) are known to reduce CO2 selectively to either CO or HCOO- depending on their composition. However, it remains unclear exactly which factors induce this switch in reaction pathways and whether these two related bimetal combinations follow similar general structure-activity trends. To investigate these questions systematically, Cu-In and Cu-Sn bimetallic catalysts were synthesized across a range of composition ratios and studied in detail. Compositional and morphological control was achieved via a simple electrochemical synthesis approach. A combination of operando and quasi-in situ spectroscopic techniques, including X-ray photoelectron, X-ray absorption, and Raman spectroscopy, was used to observe the dynamic behaviors of the catalysts' surface structure, composition, speciation, and local environment during CO2 electrolysis. The two systems exhibited similar selectivity dependency on their surface composition. Cu-rich catalysts produce mainly CO, while Cu-poor catalysts were found to mainly produce HCOO-. Despite these similarities, the speciation of Sn and In at the surface differed from each other and was found to be strongly dependent on the applied potential and the catalyst composition. For Cu-rich compositions optimized for CO production (Cu85In15 and Cu85Sn15), indium was present predominantly in the reduced metallic form (In0), whereas tin mainly existed as an oxidized species (Sn2/4+). Meanwhile, for the HCOO--selective compositions (Cu25In75 and Cu40Sn60), the indium exclusively exhibited In0 regardless of the applied potential, while the tin was reduced to metallic (Sn0) only at the most negative applied potential, which corresponds to the best HCOO- selectivity. Furthermore, while Cu40Sn60 enhances HCOO- selectivity by inhibiting H2 evolution, Cu25In75 improves the HCOO- selectivity at the expense of CO production. Due to these differences, we contend that identical mechanisms cannot be used to explain the behavior of these two bimetallic systems (Cu-In and Cu-Sn). Operando surface-enhanced Raman spectroscopy measurements provide direct evidence of the local alkalization and its impact on the dynamic transformation of oxidized Cu surface species (Cu2O/CuO) into a mixture of Cu(OH)2 and basic Cu carbonates [Cux(OH)y(CO3)y] rather than metallic Cu under CO2 electrolysis. This study provides unique insights into the origin of the switch in selectivity between CO and HCOO- pathways at Cu bimetallic catalysts and the nature of surface-active sites and key intermediates for both pathways.

7.
ACS Appl Mater Interfaces ; 13(46): 55080-55091, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34761678

RESUMEN

Cuprous oxide (Cu2O) is a promising photocathode material for photoelectrochemical (PEC) water splitting. Recently, the PEC performances of Cu2O-based devices have been considerably improved by introducing nanostructures, semiconductor overlayers, and hydrogen evolution reaction (HER) catalysts. However, Cu2O devices still suffer from poor stability in aqueous solution, especially in strong acidic or alkaline conditions, despite the use of an intrinsically stable oxide overlayer as a protection layer. Thus, it is essential to fully understand the stability of the entire Cu2O photocathodes in these conditions for establishing suitable protection strategies to achieve durable PEC water splitting. In this work, the stability of bare and protected Cu2O nanowire (NW) photocathodes was evaluated in detail using microscopy techniques and compositional analyses. The insights gained in this work will guide the design and synthesis of durable photoelectrodes for PEC water splitting.

8.
ACS Appl Mater Interfaces ; 13(32): 38161-38169, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34370955

RESUMEN

To sustainably exist within planetary boundaries, we must greatly curtail our extraction of fuels and materials from the Earth. This requires new technologies based on reuse and repurposing of material already available. Electrochemical conversion of CO2 into valuable chemicals and fuels is a promising alternative to deriving them from fossil fuels. But most metals used for electrocatalysis are either endangered or at serious risk of limitation to their future supply. Here, we demonstrate a combined strategy for repurposing of a waste industrial Cu-Sn bronze as a catalyst material precursor and its application toward CO2 reuse. By a simple electrochemical transfer method, waste bronzes with composition Cu14Sn were anodically dissolved and cathodically redeposited under dynamic hydrogen bubble template conditions to yield mesoporous foams with Cu10Sn surface composition. The bimetal foam electrodes exhibited high CO2 electroreduction selectivity toward CO, achieving greater than 85% faradaic efficiency accompanied by a considerable suppression of the competing H2 evolution reaction. The Cu-Sn foam electrodes showed good durability over several hours of continuous electrolysis without any significant change in the composition, morphology, and selectivity for CO as a target product.

9.
Nat Commun ; 12(1): 3395, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099643

RESUMEN

Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their low melting point. However, their high vapor pressure still poses potential safety concerns for practical usages. Herein, we report facile capillary condensation of gas electrolyte by strong confinement in sub-nanometer pores of metal-organic framework (MOF). By designing MOF-polymer membranes (MPMs) that present dense and continuous micropore (~0.8 nm) networks, we show significant uptake of hydrofluorocarbon molecules in MOF pores at pressure lower than the bulk counterpart. This unique property enables lithium/fluorinated graphite batteries with MPM-based electrolytes to deliver a significantly higher capacity than those with commercial separator membranes (~500 mAh g-1 vs. <0.03 mAh g-1) at -40 °C under reduced pressure of the electrolyte.

10.
Front Neurol ; 12: 624217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692742

RESUMEN

We tested the effect of daytime indoor light exposure with varying melanopic strength on cognitive performance in college-aged students who maintained an enforced nightly sleep opportunity of 7 h (i.e., nightly sleep duration no longer than 7 h) for 1 week immediately preceding the day of light exposure. Participants (n = 39; mean age ± SD = 24.5 ± 3.2 years; 21 F) were randomized to an 8 h daytime exposure to one of four white light conditions of equal photopic illuminance (~50 lux at eye level in the vertical plane) but different melanopic illuminance [24-45 melanopic-EDI lux (melEDI)] generated by varying correlated color temperatures [3000K (low-melEDI) or 5000K (high-melEDI)] and spectra [conventional or daylight-like]. Accuracy on a 2-min addition task was 5% better in the daylight-like high-melEDI condition (highest melEDI) compared to the conventional low-melEDI condition (lowest melEDI; p < 0.01). Performance speed on the motor sequence learning task was 3.2 times faster (p < 0.05) during the daylight-like high-melEDI condition compared to the conventional low-melEDI. Subjective sleepiness was 1.5 times lower in the conventional high-melEDI condition compared to the conventional low-melEDI condition, but levels were similar between conventional low- and daylight-like high-melEDI conditions. These results demonstrate that exposure to high-melanopic (short wavelength-enriched) white light improves processing speed, working memory, and procedural learning on a motor sequence task in modestly sleep restricted young adults, and have important implications for optimizing lighting conditions in schools, colleges, and other built environments.

11.
ACS Appl Mater Interfaces ; 12(47): 52560-52570, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33180455

RESUMEN

Covellite-phase CuS and carrollite-phase CuCo2S4 nano- and microstructures were synthesized from tetrachloridometallate-based ionic liquid precursors using a novel, facile, and highly controllable hot-injection synthesis strategy. The synthesis parameters including reaction time and temperature were first optimized to produce CuS with a well-controlled and unique morphology, providing the best electrocatalytic activity toward the oxygen evolution reaction (OER). In an extension to this approach, the electrocatalytic activity was further improved by incorporating Co into the CuS synthesis method to yield CuCo2S4 microflowers. Both routes provide high microflower yields of >80 wt %. The CuCo2S4 microflowers exhibit a superior performance for the OER in alkaline medium compared to CuS. This is demonstrated by a lower onset potential (∼1.45 V vs RHE @10 mA/cm2), better durability, and higher turnover frequencies compared to bare CuS flowers or commercial Pt/C and IrO2 electrodes. Likely, this effect is associated with the presence of Co3+ sites on which a better adsorption of reactive species formed during the OER (e.g., OH, O, OOH, etc.) can be achieved, thus reducing the OER charge-transfer resistance, as indicated by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy measurements.

12.
Sch Psychol ; 35(4): 227-232, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32673051

RESUMEN

School Psychology is an outlet for research on children, youth, educators, and families that has scientific, practice, and policy implications. The novel coronavirus 2019 (COVID-19) pandemic has significantly disrupted K-12 schooling as well as university training, impacting educational attainment and highlighting longstanding inequality. Furthermore, the killing of Breonna Taylor and George Floyd has precipitated worldwide protests against antiblack racism, white supremacy, and police brutality. In this editorial, we highlight the potential impacts to our field, including prioritizing research related to educational equity, identifying new research questions related to technology, and utilizing new research methods. We also consider the impact of gender and racial disparities in publications during this time. Finally, given these events, we discuss how best our editorial team can serve the field. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/psicología , Políticas Editoriales , Publicaciones Periódicas como Asunto , Neumonía Viral/psicología , Racismo/psicología , Sexismo/psicología , Éxito Académico , Adolescente , COVID-19 , Niño , Humanos , Pandemias , Racismo/prevención & control , SARS-CoV-2 , Sexismo/prevención & control
13.
Nat Chem ; 12(1): 82-89, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31636394

RESUMEN

Water oxidation is the key kinetic bottleneck of photoelectrochemical devices for fuel synthesis. Despite advances in the identification of intermediates, elucidating the catalytic mechanism of this multi-redox reaction on metal-oxide photoanodes remains a significant experimental and theoretical challenge. Here, we report an experimental analysis of water oxidation kinetics on four widely studied metal oxides, focusing particularly on haematite. We observe that haematite is able to access a reaction mechanism that is third order in surface-hole density, which is assigned to equilibration between three surface holes and M(OH)-O-M(OH) sites. This reaction exhibits low activation energy (Ea ≈ 60 meV). Density functional theory is used to determine the energetics of charge accumulation and O-O bond formation on a model haematite (110) surface. The proposed mechanism shows parallels with the function of the oxygen evolving complex of photosystem II, and provides new insights into the mechanism of heterogeneous water oxidation on a metal oxide surface.

14.
J Am Chem Soc ; 139(33): 11537-11543, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28735533

RESUMEN

The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution.

15.
Nat Commun ; 8: 14280, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28233785

RESUMEN

Multi-electron heterogeneous catalysis is a pivotal element in the (photo)electrochemical generation of solar fuels. However, mechanistic studies of these systems are difficult to elucidate by means of electrochemical methods alone. Here we report a spectroelectrochemical analysis of hydrogen evolution on ruthenium oxide employed as an electrocatalyst and as part of a cuprous oxide-based photocathode. We use optical absorbance spectroscopy to quantify the densities of reduced ruthenium oxide species, and correlate these with current densities resulting from proton reduction. This enables us to compare directly the catalytic function of dark and light electrodes. We find that hydrogen evolution is second order in the density of active, doubly reduced species independent of whether these are generated by applied potential or light irradiation. Our observation of a second order rate law allows us to distinguish between the most common reaction paths and propose a mechanism involving the homolytic reductive elimination of hydrogen.

16.
ACS Omega ; 2(7): 3424-3431, 2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457664

RESUMEN

Nowadays, the efficient, stable, and scalable conversion of solar energy into chemical fuels represents a great scientific, economic, and ethical challenge. Amongst the available candidate technologies, photoelectrochemical water-splitting potentially has the most promising technoeconomic trade-off between cost and efficiency. However, research on semiconductors and photoelectrode architectures suitable for H2 evolution has focused mainly on the use of fabrication techniques and inorganic materials that are not easily scalable. Here, we report for the first time an all solution-processed approach for the fabrication of hybrid organic/inorganic photocathodes based on organic semiconductor bulk heterojunctions that exhibit promising photoelectrochemical performance. The sequential deposition of inorganic material, charge-selective contacts, visible-light sensitive organic polymers, and earth-abundant, nonprecious catalyst by spin coating leads to state-of-the-art photoelectrochemical parameters, comprising a high onset potential [+0.602 V vs reversible hydrogen electrode (RHE)] and a positive maximum power point (+0.222 V vs RHE), a photocurrent density as high as 5.25 mA/cm2 at 0 V versus RHE, an incident photon-to-current conversion efficiency at 0 V versus RHE of above 35%, and 100% faradaic efficiency for hydrogen production. The demonstrated all solution-processed hybrid photoelectrodes represent an eligible candidate for the scalable and low-cost solar-to-H2 conversion technology that embodies the feasibility requirements for large area, plant-scale applications.

17.
Int J Stroke ; 11(4): 459-84, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27079654

RESUMEN

Stroke rehabilitation is a progressive, dynamic, goal-orientated process aimed at enabling a person with impairment to reach their optimal physical, cognitive, emotional, communicative, social and/or functional activity level. After a stroke, patients often continue to require rehabilitation for persistent deficits related to spasticity, upper and lower extremity dysfunction, shoulder and central pain, mobility/gait, dysphagia, vision, and communication. Each year in Canada 62,000 people experience a stroke. Among stroke survivors, over 6500 individuals access in-patient stroke rehabilitation and stay a median of 30 days (inter-quartile range 19 to 45 days). The 2015 update of the Canadian Stroke Best Practice Recommendations: Stroke Rehabilitation Practice Guidelines is a comprehensive summary of current evidence-based recommendations for all members of multidisciplinary teams working in a range of settings, who provide care to patients following stroke. These recommendations have been developed to address both the organization of stroke rehabilitation within a system of care (i.e., Initial Rehabilitation Assessment; Stroke Rehabilitation Units; Stroke Rehabilitation Teams; Delivery; Outpatient and Community-Based Rehabilitation), and specific interventions and management in stroke recovery and direct clinical care (i.e., Upper Extremity Dysfunction; Lower Extremity Dysfunction; Dysphagia and Malnutrition; Visual-Perceptual Deficits; Central Pain; Communication; Life Roles). In addition, stroke happens at any age, and therefore a new section has been added to the 2015 update to highlight components of stroke rehabilitation for children who have experienced a stroke, either prenatally, as a newborn, or during childhood. All recommendations have been assigned a level of evidence which reflects the strength and quality of current research evidence available to support the recommendation. The updated Rehabilitation Clinical Practice Guidelines feature several additions that reflect new research areas and stronger evidence for already existing recommendations. It is anticipated that these guidelines will provide direction and standardization for patients, families/caregiver(s), and clinicians within Canada and internationally.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Canadá , Medicina Basada en la Evidencia , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos
18.
Nano Lett ; 16(3): 1848-57, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26866762

RESUMEN

Due to its abundance, scalability, and nontoxicity, Cu2O has attracted extensive attention toward solar energy conversion, and it is the best performing metal oxide material. Until now, the high efficiency devices are all planar in structure, and their photocurrent densities still fall well below the theoretical value of 14.5 mA cm(-2) due to the incompatible light absorption and charge carrier diffusion lengths. Nanowire structures have been considered as a rational and promising approach to solve this issue, but due to various challenges, performance improvements through the use of nanowires have rarely been achieved. In this work, we develop a new synthetic method to grow Cu2O nanowire arrays on conductive fluorine-doped tin oxide substrates with well-controlled phase and excellent electronic and photonic properties. Also, we introduce an innovative blocking layer strategy to enable high performance. Further, through material engineering by combining a conformal nanoscale p-n junction, durable protective overlayer, and uniform catalyst decoration, we have successfully fabricated Cu2O nanowire array photocathodes for hydrogen generation from solar water splitting delivering unprecedentedly high photocurrent densities of 10 mA cm(-2) and stable operation beyond 50 h, establishing a new benchmark for metal oxide based photoelectrodes.

19.
J Am Chem Soc ; 138(6): 1938-46, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26804626

RESUMEN

Sunlight-driven CO2 reduction is a promising way to close the anthropogenic carbon cycle. Integrating light harvester and electrocatalyst functions into a single photoelectrode, which converts solar energy and CO2 directly into reduced carbon species, is under extensive investigation. The immobilization of rhenium-containing CO2 reduction catalysts on the surface of a protected Cu2O-based photocathode allows for the design of a photofunctional unit combining the advantages of molecular catalysts with inorganic photoabsorbers. To achieve large current densities, a nanostructured TiO2 scaffold, processed at low temperature, was deposited on the surface of protected Cu2O photocathodes. This led to a 40-fold enhancement of the catalytic photocurrent as compared to planar devices, resulting in the sunlight-driven evolution of CO at large current densities and with high selectivity. Potentiodynamic and spectroelectrochemical measurements point toward a similar mechanism for the catalyst in the bound and unbound form, whereas no significant production of CO was observed from the scaffold in the absence of a molecular catalyst.

20.
Pediatrics ; 136(6): 1173-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26553189

RESUMEN

Studies of innovative therapies for muscular dystrophy raise unique ethical issues. The disease is currently untreatable and relentlessly progressive. A number of potentially efficacious treatments are being developed, but like all treatments, they may have unforeseen adverse effects. Nevertheless, patients and families, facing a bleak future, may be willing to take the gamble and try the treatments. Many doctors are eager to study them. But should institutional review boards approve them? This article discusses these issues and recounts the ways that one such study elicited different responses from different institutional review boards.


Asunto(s)
Ensayos Clínicos como Asunto/ética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Ética en Investigación , Distrofia Muscular de Duchenne/terapia , Seguridad del Paciente/legislación & jurisprudencia , Adolescente , Niño , Preescolar , Ensayos Clínicos como Asunto/legislación & jurisprudencia , Comités de Ética , Humanos , Seguridad del Paciente/normas , Riesgo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...