Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 7(9)2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30200644

RESUMEN

Glioblastomas are highly resistant to radiation and chemotherapy. Currently, there are no effective therapies for this type of tumor. Signaling mechanisms initiated by PDGFR and IGF-1R are important in glioblastoma, and inhibition of the signal transduction pathways initiated by these receptors could be a useful alternative strategy for glioblastoma treatment. We have studied the effects of the PDGFR inhibitor JNJ-10198409 (JNJ) and the IGF-1R inhibitor picropodophyllin (PPP) in glioblastoma cell lines as well as in primary cultures derived from patients affected by this type of tumor. JNJ and PPP treatment blocked PDGFR and IGF-1R signaling respectively and reduced Akt and Erk 1/2 phosphorylation. Both inhibitors diminished cell proliferation, inducing a G2/M block of the cell cycle. Cell death induced by JNJ was caspase-dependent, Annexin-V positive and caused PARP cleavage, especially in T98 cells, suggesting an apoptotic mechanism. However, cell death induced by PPP was not completely inhibited by caspase inhibitors in all cell lines apart from LN-229 cells, indicating a caspase-independent mechanism. Several inhibitors targeted against different cell death pathways could not block this caspase-independent component, which may be a non-programmed necrotic mechanism. Apoptotic arrays performed in T98 and LN-229 cells upon JNJ and PPP treatment revealed that procaspase 3 levels were augmented by both drugs in T98 cells and only by JNJ in LN229-cells. Furthermore, XIAP and survivin levels were much higher in LN-229 cells than in T98 cells, revealing that LN-229 cells are more susceptible to undergo caspase-independent cell death mechanisms. JNJ and PPP combination was more effective than each treatment alone.

2.
Neoplasia ; 16(10): 845-60, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25379021

RESUMEN

Selumetinib (AZD6244, ARRY-142886) is a MEK1/2 inhibitor that has gained interest as an anti-tumour agent. We have determined the degree of sensitivity/resistance to Selumetinib in a panel of colorectal cancer cell lines using cell proliferation and soft agar assays. Sensitive cell lines underwent G1 arrest, whereas Selumetinib had no effect on the cell cycle of resistant cells. Some of the resistant cell lines showed high levels of ERK1/2 phosphorylation in the absence of serum. Selumetinib inhibited phosphorylation of ERK1/2 and RSK and had no effect on AKT phosphorylation in both sensitive and resistant cells. Furthermore, mutations in KRAS, BRAF, or PIK3CA were not clearly associated with Selumetinib resistance. Surprisingly, Selumetinib was able to inhibit phosphorylation of p70 S6 kinase (p70S6K) and its downstream target ribosomal protein S6 (RPS6) in sensitive cell lines. However, p70S6K and RPS6 phosphorylation remained unaffected or even increased in resistant cells. Moreover, in some of the resistant cell lines p70S6K and RPS6 were phosphorylated in the absence of serum. Interestingly, colorectal primary cultures derived from tumours excised to patients exhibited the same behaviour than established cell lines. Pharmacological inhibition of p70S6K using the PI3K/mTOR inhibitor NVP-BEZ235, the specific mTOR inhibitor Rapamycin and the specific p70S6K inhibitor PF-4708671 potentiated Selumetinib effects in resistant cells. In addition, biological inhibition of p70S6K using siRNA rendered responsiveness to Selumetinib in resistant cell lines. Furthermore, combination of p70S6K silencing and PF-47086714 was even more effective. We can conclude that p70S6K and its downstream target RPS6 are potential biomarkers of resistance to Selumetinib in colorectal cancer.


Asunto(s)
Bencimidazoles/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteína S6 Ribosómica/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Activación Enzimática/efectos de los fármacos , Humanos , Imidazoles/farmacología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Terapia Molecular Dirigida , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras) , Quinolinas/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas ras/genética
3.
Transl Oncol ; 7(5): 590-604, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25389454

RESUMEN

The use of heat shock protein 90 (Hsp90) inhibitors is an attractive antineoplastic therapy. We wanted to compare the effects of the benzoquinone 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) and the novel isoxazole resorcinol-based Hsp90 inhibitor NVP-AUY922 in a panel of pancreatic and colorectal carcinoma cell lines and in colorectal primary cultures derived from tumors excised to patients. PANC-1, CFPAC-1, and Caco-2 cells were intrinsically resistant to 17-AAG but sensitive to NVP-AUY922. Other cellular models were sensitive to both inhibitors. Human epidermal growth factor receptor receptors and their downstream signaling pathways were downregulated in susceptible cellular models, and concurrently, Hsp70 was induced. Intrinsic resistance to 17-AAG did not correlate with expression of ATP-binding cassette transporters involved in multidrug resistance. Some 17-AAG-resistant, NVP-AUY922-sensitive cell lines lacked NAD(P)H: quinone oxidoreductase 1 (NQO1) enzyme and activity. However, colorectal LoVo cells still responded to both drugs in spite of having undetectable levels and activity of NQO1. Pharmacological and biologic inhibition of NQO1 did not confer resistance to 17-AAG in sensitive cell lines. Therefore, even though 17-AAG sensitivity is related to NQO1 protein levels and enzymatic activity, the absence of NQO1 does not necessarily convey resistance to 17-AAG in these cellular models. Moreover, NVP-AUY922 does not require NQO1 for its action and is a more potent inhibitor than 17-AAG in these cells. More importantly, we show in this report that NVP-AUY922 potentiates the inhibitory effects of chemotherapeutic agents, such as gemcitabine or oxaliplatin, and other drugs that are currently being evaluated in clinical trials as antitumor agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...